Question 3.35: Give an affine transformation T(x^→ ) = x0^→ + x^→ A, where ...

Give an affine transformation

T\left(\overrightarrow{x}\right)=\overrightarrow{x_{0} }+\overrightarrow{x}A,  where  A =\left[\begin{matrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \\  \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \\  \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{matrix} \right] .

Determine these \overrightarrow{x_{0} } so that each such T is an orthogonal reflection, and the direction and the plane of invariant points.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

It is obvious that A is orthogonal and det A = −1. If we pick \overrightarrow{x_{0} } \in Im\left(A-I_{3}\right) ,then the associated T is an orthogonal reflection.
The characteristic polynomial of A is

det \left(A-tI_{3}\right)= \frac{1}{27}\left(-27t^{3}+27t^{2}+27t-27\right)=-\left(t-1\right)^{2}\left(t+1\right)

and hence A has eigenvalue 1 of multiplicity 2 and another eigenvalue −1.
Solve

\overrightarrow{x} \left(A-I_{3}\right)=\overrightarrow{0}

\Rightarrow x_{1}-x_{2}-x_{3}=0.

Take unit eigenvectors \overrightarrow{u_{1} }=\frac{1}{\sqrt{2}}\left(1,1,0\right) and \overrightarrow{u_{2} }=\frac{1}{\sqrt{6}}\left(1,-1,2\right) so that \overrightarrow{u_{1} }\bot\overrightarrow{u_{2} }. Solve

\overrightarrow{x} \left(A+I_{3}\right)=\overrightarrow{0}

\Rightarrow 2x_{1}+x_{2}+x_{3}=0, x_{1}+2x_{2}-x_{3}=0.

Take a unit vector \overrightarrow{u_{3} }=\frac{1}{\sqrt{3}}\left(1,-1,-1\right). Then, C = \left\{\overrightarrow{u_{1} },\overrightarrow{u_{2} },\overrightarrow{u_{3} }\right\} is an orthonormal basis for R³. In C,

\left[A\right]_{C}=QAQ^{-1}=\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{matrix} \right] ,   where  Q =\left[\begin{matrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \\  \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \\ \frac{1}{\sqrt{3}}& -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{matrix} \right] .

Note that Im \left(A-I_{3}\right)=Ker \left(A+I_{3}\right)=Ker \left(A-I_{3}\right)^{ \bot}. So there are three different ways to compute Im \left(A-I_{3}\right)= \ll \left(1,-1,-1\right)\gg. Pick up any point \overrightarrow{x_{0} } on Im \left(A-I_{3}\right), say \overrightarrow{x_{0} }=\overrightarrow{0 } for simplicity, then the direction of the reflection T =\overrightarrow{x}A is \overrightarrow{u_{3} } and the plane of invariant points is \ll \overrightarrow{u_{1} },\overrightarrow{u_{2} }\gg=\left\{\overrightarrow{x} \in R^{3} \mid x_{1}-x_{2}-x_{3}=0 \right\}= \ll \overrightarrow{u_{3} } \gg^{ \bot}. See Fig. 3.72(a).

On the other hand, take \overrightarrow{v_{1} }= \overrightarrow{u_{1} }= \frac{1}{\sqrt{2}}\left(1,1,0\right). Then \ll \overrightarrow{v_{1} } \gg^{ \bot}=\left\{\overrightarrow{x} \mid  x_{1}+x_{2}=0\right\}. Choose \overrightarrow{v_{2} }= \frac{1}{\sqrt{2}}\left(1,-1,0\right), \overrightarrow{v_{3} }= \overrightarrow{e_{3} }=\left(0,0,1\right) so that B = \left\{ \overrightarrow{v_{1} }, \overrightarrow{v_{2} }, \overrightarrow{v_{3} }\right\} forms an orthonormal basis for R³. Since

\overrightarrow{v_{1} }A=\overrightarrow{v_{1} },

\overrightarrow{v_{2} }A=\frac{1}{\sqrt{2}}\left(-\frac{1}{3},\frac{1}{3},\frac{4}{3}\right) = -\frac{1}{3}\overrightarrow{v_{2} }+\frac{4}{3\sqrt{2}}\overrightarrow{v_{3} },

\overrightarrow{v_{3} }A=\left(\frac{2}{3},-\frac{2}{3},\frac{1}{3}\right) =\frac{2\sqrt{2}}{3}\overrightarrow{v_{2} }+\frac{1}{3}\overrightarrow{v_{3} }

\Rightarrow \left[A\right]_{B}=PAP^{-1}=\left[\begin{matrix}  & 0 & 0 \\ \\  0 & -\frac{1}{3} & \frac{2\sqrt{2}}{3} \\ \\  0 & \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{matrix} \right],  where P = \left[\begin{matrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \\  \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \\ 0 & 0 & 1 \end{matrix} \right].

Also, the submatrix

\left[\begin{matrix}  -\frac{1}{3} & \frac{2\sqrt{2}}{3} \\ \\  \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{matrix} \right]= \left[\begin{matrix} -1 & 0 \\  0 & 1 \end{matrix} \right]\left[\begin{matrix} \cos\theta & \sin\theta \\  -\sin\theta & \cos\theta \end{matrix} \right]

where \cos\theta =\frac{1}{3}, \sin\theta=-\frac{2\sqrt{2}}{3} . To interpret T\left(\overrightarrow{x}\right)= \overrightarrow{x}A in B, take any point \overrightarrow{x} \in R^{3}. Then, letting \overrightarrow{y}=\overrightarrow{x}A,

\overrightarrow{y}=\overrightarrow{x}P^{-1}\left(PAP^{-1}\right)P

\Rightarrow \left[\overrightarrow{y}\right] _{B}=\left[\overrightarrow{x}\right] _{B}\left(PAP^{-1}\right),  i.e. letting \left[\overrightarrow{x}\right] _{B}=\left(\alpha _{1},\alpha _{2},\alpha _{3}\right) and

\left[\overrightarrow{y}\right] _{B}= \left(\beta _{1},\beta _{2},\beta _{3}\right),

\beta _{1}=\alpha _{1},

\left(\beta _{2},\beta _{3}\right)=\left(\alpha _{2},\alpha _{3}\right)\left[\begin{matrix} -1 & 0 \\  0 & 1 \end{matrix} \right]\left[\begin{matrix} \cos\theta & \sin\theta \\  -\sin\theta & \cos\theta \end{matrix} \right].

This means that, when the height \alpha _{1} of the point \overrightarrow{x} to the plane \ll \overrightarrow{v_{2} },\overrightarrow{v_{3} }\gg being fixed, the orthogonal projection \left(\alpha _{2},\alpha _{3}\right) of \overrightarrow{x} on \ll \overrightarrow{v_{2} },\overrightarrow{v_{3} }\gg is subject to a reflection with respect to the axis \ll \overrightarrow{v_{3} }\gg to the point \left(-\alpha _{2},\alpha _{3}\right) and then is rotated through the angle θ in the plane \ll \overrightarrow{v_{2} },\overrightarrow{v_{3} }\gg with \overrightarrow{0 } as center to the point \left(\beta _{2},\beta _{3}\right).Therefore, the point  \left(\beta _{1},\beta _{2},\beta _{3}\right), where \beta _{1}=\alpha _{1}, is the coordinate vector of \overrightarrow{x}A=T\left(\overrightarrow{x}\right) in B. See Fig. 3.72(b). Compare with Figs. 2.109 and 2.110.

Just like (2.8.38) and (2.8.39), an affine transformation T\left(\overrightarrow{x}\right)= \overrightarrow{x_{0} } +\overrightarrow{x}A on R³ can be expressed as a composite of a finite number of reflections, stretches and shearings and then followed by a translation.

For example, let T\left(\overrightarrow{x}\right)= \overrightarrow{x_{0} } +\overrightarrow{x}A  where A is the one in Example 3.6 of Sec. 3.7.5. Then, A is the composite of the following affine transformations in N =\left\{\overrightarrow{0} ,\overrightarrow{e_{1} } ,\overrightarrow{e_{2} } ,\overrightarrow{e_{3} } \right\} ,

1.\left[\begin{matrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] : a shearing in the direction \overrightarrow{e_{1} } with \ll \overrightarrow{e_{1} },\overrightarrow{e_{3} }\gg as the plane of invariant points and coefficient 4.

2.\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{matrix} \right] : a shearing in the direction \overrightarrow{e_{1} } with \ll \overrightarrow{e_{1} },\overrightarrow{e_{2} }\gg as the plane of invariant points and coefficient 1.

3. \left[\begin{matrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{matrix} \right]\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{matrix} \right]=\left[\begin{matrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{matrix} \right]:a two-way stretch having scale factor −1 along \ll \overrightarrow{e_{2} }\gg and 5 along \ll \overrightarrow{e_{3} }\gg   and  \ll \overrightarrow{e_{1} }\gg the line of invariant points. Note that the former factor represents an orthogonal reflection in the direction \overrightarrow{e_{2} }.

4. \left[\begin{matrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] : a shearing in the direction \overrightarrow{e_{2} } with \ll \overrightarrow{e_{2} },\overrightarrow{e_{3} }\gg as the plane of invariant points and coefficient 1.

5. \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{matrix} \right] : a shearing in the direction \overrightarrow{e_{3} } with \ll \overrightarrow{e_{1} },\overrightarrow{e_{3} }\gg as the plane of invariant points and coefficient 5.

6.\left[\begin{matrix} 1 & 0 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] : a shearing in the direction \overrightarrow{e_{3} } with \ll \overrightarrow{e_{2} },\overrightarrow{e_{3} }\gg as the plane of invariant points and coefficient -5.

7. \overrightarrow{x} \rightarrow \overrightarrow{x_{0} }+\overrightarrow{x} : a translation along \overrightarrow{x_{0} }.

Readers shall practice more examples by themselves.

4
5
6

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...
Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...