Question 6.6: Estimate V, H^R, and S^R for an equimolar mixture of carbon ...

Estimate V, H^R, and S^R or an equimolar mixture of carbon dioxide(1) and propane(2) at 450 K and 140 bar by the Lee/Kesler correlations.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The pseudocritical parameters are found by Eqs. (6.78) through (6.80) with critical constants from Table B.1 of App. B:

\omega \equiv \sum\limits_{i}{y_{i}\omega _{i } }      (6.78)

P_{pc} \equiv \sum\limits_{i}{y_{i} P_{c_{i} } }     (6.80)

ω = y_1 ω_1 + y_2 ω_2 = ( 0.5 ) ( 0.224 ) + ( 0.5 ) ( 0.152 ) = 0.188

T_{pc } = y _1 T_{c 1} + y _2 T_{c 2} = ( 0.5 ) ( 304.2 ) + ( 0.5 ) ( 369.8 ) = 337.0 K

P pc = y_1 P c_1 + y_2 P c _2 = ( 0.5 ) ( 73.83 ) + ( 0.5 ) ( 42.48 ) = 58.15  bar

Then,

T_{pr} =\frac{450}{337.0} = 1.335           P_{pr} = \frac{140}{58.15} =2041

Values of Z^0 and Z^1 from Tables D.3 and D.4 at these reduced conditions are:

Z^0 = 0.697 and Z^1 = 0.205

By Eq. (3.57),

Z = 1 + \frac{BP}{RT} = 1+ \left(\frac{BP_{c} }{R T_{c} } \right) \frac{P_{r} }{T_R} = 1 + \widehat{B} \frac{P_{r} }{T_R}      (3.57)

  Z = Z^0 + ω Z^1 = 0.697 + ( 0.188 ) ( 0.205 ) = 0.736

Thus,

  V = \frac{ZRT}{P} = \frac{( 0.736 ) ( 83.14 ) ( 450 )}{140} = 196.7 cm^3 ⋅mol^−1

Similarly, from Tables D.7 and D.8, with substitution into Eq. (6.66):

\frac{H^{r} }{RT_c} = \frac{( H^{R} )^{0} }{R t_c} + ω \frac{( H^{R} )^{1} }{R t_c}      (6.66)

  (\frac{H^{R} }{RT_{pc} } )^{0} = − 1.730 (\frac{H^{R} }{RT_{pc} } )^{1} = − 0.169

\frac{H^{R} }{R T_{pc} } = = − 1.730 + ( 0.188 ) ( − 0.169 ) = − 1.762  

and

H^R = ( 8.314 ) ( 337.0 ) ( −1.762 ) = − 4937  J ⋅mol^−1 

From Tables D.11 and D.12 and substitution into Eq. (6.67),

\frac{S^{r} }{R} = − 0.967 + ( 0.188 ) ( − 0.330 ) = − 1.029  

and

S^R = ( 8.314 ) ( − 1.029 ) = − 8.56 J ⋅mol^−1 ⋅K^−1

Related Answered Questions