Question 3.37: Determine the relative positions of two planes S21 = x0^→ + ...

Determine the relative positions of two planes S^{2}_{1}=\overrightarrow{x_{0} }+ S_{1}  and  S^{2}_{2}=\overrightarrow{y_{0} }+ S_{2} in R³ (see Fig. 3.16).

8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Both S_{1}  and  S_{2} are two-dimensional vector subspaces of R³.

In case S_{1} = S_{2} :  if   \overrightarrow{x_{0} }-\overrightarrow{y_{0} } \in S_{1} ,  then  S^{2}_{1}=S^{2}_{2} is coincident; if \overrightarrow{x_{0} }-\overrightarrow{y_{0} } \notin S_{1} ,  then   S^{2}_{1}\parallel S^{2}_{2}.

In case S_{1} \cap S_{2} is one-dimensional: no matter \overrightarrow{x_{0} }-\overrightarrow{y_{0} } \in S_{1} \cap S_{2} or not, S^{2}_{1} intersects with S^{2}_{2} along a line, namely \overrightarrow{x_{0} }+S_{1} \cap S_{2} if \overrightarrow{y_{0} } is chosen to be equal to \overrightarrow{x_{0} }.

By dimension theorem for vector spaces: dim S_{1} + dim S_{2} = dim S_{1} \cap S_{2} + dim \left(S_{1} +S_{2}\right) (see Ex. <A> 11 of Sec. 3.2 or Sec. B.2), since
dim \left(S_{1} +S_{2}\right) \leq  3, therefore dim S_{1} \cap S_{2} \geq  1. Hence S_{1} \cap S_{2} = \left\{\overrightarrow{0 } \right\} never happens in R³ and S_{1}  and  S_{2} can not be skew to each other.

As a consequence of Examples 3.36 and 3.37, in a tetrahedron \Delta  \overrightarrow{a_{0} }\overrightarrow{a_{1} }\overrightarrow{a_{2} }\overrightarrow{a_{3} } (see Fig. 3.74), we have the following information:

1. Vertices are skew to each other.
2. Vertex \overrightarrow{a_{3} } is skew to the face \Delta  \overrightarrow{a_{0} }\overrightarrow{a_{1} }\overrightarrow{a_{2} }, etc.
3. The edge \overrightarrow{a_{0} }\overrightarrow{a_{1} } is skew to the edge \overrightarrow{a_{2} }\overrightarrow{a_{3} } but intersects with the face\overrightarrow{a_{1} }\overrightarrow{a_{2} }\overrightarrow{a_{3} }, etc.

4. Any two faces intersect along their common edge.

Do you know what happens to \Delta  \overrightarrow{a_{0} }\overrightarrow{a_{1} }\overrightarrow{a_{2} }\overrightarrow{a_{3} } \overrightarrow{a_{4} }  in  R^{4}?

To cultivate our geometric intuition, we give one more example.

9

Related Answered Questions

Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...