Question 3.38: Determine the relative positions of (a) two straight lines i...

Determine the relative positions of

(a) two straight lines in R^{4},
(b) two (two-dimensional) planes in R^{4}, and
(c) one (two-dimensional) plane and one (three-dimensional) hyperplane in R^{4}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The answer is like Example 3.36. Why? Prove it.

(b) Let S^{2}_{1}=\overrightarrow{x_{0} }+S_{1}  and  S^{2}_{2}=\overrightarrow{y_{0} }+S_{2} be two planes in R^{4}.

Besides the known three relative positions in Example 3.37, namely, coincident, parallel and intersecting along a line, there does exist another two possibilities in R^{4}: intersecting at a point, and Case 4 but never skew to each other.

In case dim  S_{1} \cap S_{2} =1: then

dim  S_{1} = dim  S_{2} =2

\Rightarrow dim \left(S_{1}+S_{2}\right)=2+2-1=3.

Hence, it is possible to choose \overrightarrow{x_{0} },\overrightarrow{y_{0} } \in R^{4} so that \overrightarrow{x_{0} }-\overrightarrow{y_{0} } \notin S_{1}+S_{2}.

According to (3.8.41), S^{2}_{1} \cap S^{2}_{2} = \pmb{\phi} holds. So Case 4 does happen.

In case S_{1} \cap S_{2} = \left\{\overrightarrow{0 }\right\}: then

dim  S_{1} = dim  S_{2} =2

\Rightarrow dim \left(S_{1}+S_{2}\right)= dim \left(S_{1}\oplus S_{2}\right) =2+2-0=4,

namely, S_{1}\oplus S_{2}=R^{4} holds. No matter how \overrightarrow{x_{0} }  and  \overrightarrow{y_{0} } are chosen, \overrightarrow{x_{0} }-\overrightarrow{y_{0} } \in R^{4} is always true. Therefore, S^{2}_{1}  and  S^{2}_{2} intersect at a point.

Since \overrightarrow{x_{0} }-\overrightarrow{y_{0} } \notin R^{4} does not happen in this case, so S^{2}_{1}   and   S^{2}_{2} are never skew to each other.

(c) Let S^{2} = \overrightarrow{x_{0} } +S_{1}  and  S^{3} = \overrightarrow{y_{0} } +S_{2} where dim  S_{1} =2, dim  S_{2} =3.

Since

dim  S_{1} \cap S_{2} = dim  S_{1}+ dim  S_{2} -dim \left(S_{1}+S_{2}\right)

=2+3-dim \left(S_{1}+S_{2}\right)=5-dim \left(S_{1}+S_{2}\right)

and 3 \leq dim \left(S_{1}+S_{2}\right) \leq  4, therefore dim S_{1} \cap S_{2} could be 1 or 2 only.

In case dim  S_{1} \cap S_{2} =1: then dim \left(S_{1}+S_{2}\right) =4. For any two points \overrightarrow{x_{0} },\overrightarrow{y_{0} }  in  R^{4} , \overrightarrow{x_{0} }-\overrightarrow{y_{0} } \in S_{1}+S_{2} =R^{4} always hold. Then S^{2} and  S^{3} will intersect along the line \overrightarrow{x_{0} }+S_{1} \cap S_{2}  if  \overrightarrow{y_{0} }=\overrightarrow{x_{0} }.

In case dim  S_{1} \cap S_{2} =2: then S_{1} \subseteq  S_{2}  and  S_{1}+S_{2} =S_{2} holds. For any two points \overrightarrow{x_{0} },\overrightarrow{y_{0} } \in R^{4}, either

\overrightarrow{x_{0} }-\overrightarrow{y_{0} } \in S_{1}+S_{2} \Rightarrow  S^{2}  and  S^{3} are coincident because S^{2} \subseteq  S^{3},

or

\overrightarrow{x_{0} }-\overrightarrow{y_{0} } \notin S_{1}+S_{2} = S_{2} \Rightarrow  S^{2}  \parallel S^{3} , parallel to each other.

Remark In R^{4}

S^{1}_{1}  and  S^{2}_{2} can be only coincident, parallel or intersecting at a point.

How about S^{1} =\overrightarrow{x_{0} }+S_{1}  and  S^{3} = \overrightarrow{y_{0} }+S_{2} ? Since

 dim  S_{1} \cap S_{2} = 1+3-dim \left(S_{1}+S_{2}\right)=4-dim \left(S_{1}+S_{2}\right),

and 3 \leq dim \left(S_{1}+S_{2}\right)=4, dim  S_{1} \cap S_{2} can be only 1 or 0.

  1. dim  S_{1} \cap S_{2} = 1: then S_{1} \subseteq S_{2}  and  S_{1}+S_{2} =S_{2}  hold. For \overrightarrow{x_{0} },\overrightarrow{y_{0} }  in  R^{4}, either

\overrightarrow{x_{0}}-\overrightarrow{y_{0} } \in S_{1}+S_{2} \Rightarrow S^{1} and S^{3} are coincident with S^{1} \subseteq S^{3},

or

\overrightarrow{x_{0}}-\overrightarrow{y_{0} } \notin S_{1}+S_{2} \Rightarrow S^{1} \parallel  S^{3}.

2. dim  S_{1} \cap S_{2} = 0: then S_{1}+S_{2} = S_{1}\oplus S_{2} = R^{4} . No matter how \overrightarrow{x_{0}} and  \overrightarrow{y_{0} } are chosen in R^{4} , \overrightarrow{x_{0}}-\overrightarrow{y_{0} } \in S_{1}+S_{2} always holds. Then S^{1}  and   S^{3} will intersect at one point.

See Exs. <A> 7 and 8 for more practice.

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...
Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...