Question 10.3: A connecting rod QR of a simple machine shown in Fig. 10.6 i...

A connecting rod QR of a simple machine shown in Fig. 10.6 is modeled as a homogeneous thin rod of length \ell, uniform cross section, and mass σ per unit length. The rod is hinged at Q at a distance α from the center O of a flywheel that turns with a constant angular velocity  \Omega=\Omega \mathbf{k},  as shown, in the inertial ground frame   0=\{O ; \mathbf{I}, \mathbf{J}, \mathbf{k}\}  fixed at O. Determine (i) the moment of momentum  of the rod relative to Q and (ii) its moment of momentum about Q.

Screenshot 2022-10-15 143704
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Solution of (i). The moment of momentum   \mathbf{h}_{r Q}  of the rod relative to Q is determined by (10.37), in which the rigid body velocity of a rod particle relative to Q in the ground frame  0=\{O ; \mathbf{I}, \mathbf{J}, \mathbf{k}\}  is given by

\mathbf{h}_{r Q}(\mathscr{B}, t) \equiv \int_{\mathscr{B}} \mathbf{r}(P, t) \times \dot{\mathbf{r}}(P, t) d m(P)                         (10.37)

\dot{\mathbf{r}}(P, t)=\mathbf{v}(P, t)  –  \mathbf{v}_Q=\boldsymbol{\omega} \times \mathbf{r}(P, t),                  (10.41a)

where  \mathbf{r}(P, t)=r \mathbf{i},  referred to the rod frame   2=\{Q ; \mathbf{i}, \mathbf{j}, \mathbf{k}\},  and the total  angular velocity of the rod frame 2 in the ground frame 0 is   \boldsymbol{\omega} \equiv \boldsymbol{\omega}_{20} \text {. Let } \boldsymbol{\omega}_{21}=\dot{\beta} \mathbf{k}   denote the angular velocity of the rod frame 2 relative to the flywheel frame  1=\{O ; \mathbf{a}, \mathbf{b}, \mathbf{k}\}  whose angular velocity is   \omega_{10}=\Omega  relative to frame 0. Then   \omega=\omega_{21}  +  \omega_{10},  that is,

\boldsymbol{\omega}=(\dot{\beta}  +  \Omega) \mathbf{k},                (10.41b)

and (10.41a) gives the relative rigid body velocity  \dot{\mathbf{r}}(P, t)=r(\dot{\beta}  +  \Omega) \mathbf{j}.   Therefore, with  d m=\sigma d r,   where  d_r   is the elemental length of the rod , (10.37) yields

\mathbf{h}_{r Q}(\mathscr{B}, t)=\sigma(\dot{\beta}  +  \Omega) \mathbf{k} \int_0^{\ell} r^2 d r=\sigma(\dot{\beta}  +  \Omega) \frac{\ell^3}{3} \mathbf{k}.                (10.41c)

The total mass of the rod is  m(\mathscr{B})=\sigma \ell,  and hence the moment of momentum of the rod relative to Q is

\mathbf{h}_{r Q}(\mathscr{B}, t)=\frac{m \ell^2}{3}(\dot{\beta}  +  \Omega) \mathbf{k}.            (10.41d)

Solution of (ii). Now consider the moment of momentum  h_Q  of the rod about Q defined by (10.33) in which   \mathbf{v}_Q=\boldsymbol{\Omega} \times \mathbf{x}=\Omega \mathbf{k} \times \alpha \mathbf{a}  yields

\mathbf{h}_Q(\mathscr{B}, t)=\int_{\mathscr{B}} \mathbf{r}(P, t) \times \mathbf{v}(P, t) d m(P)                   (10.33)

\mathbf{v}_Q=\alpha \Omega \mathbf{b},                  (10.41e)

referred to frame 1. Use of (10.41e) in (10.41a) gives   \mathbf{v}(P, t)=\alpha \Omega(\sin \beta \mathbf{i}  +  \cos \beta \mathbf{j})+r(\dot{\beta}  +  \Omega) \mathbf{j},   the velocity of P in frame 0 but referred to the rod frame 2; and with  \mathbf{r}(P, t)=r \mathbf{i},  (10.33) becomes

\mathbf{h}_Q(\mathscr{B}, t)=\int_0^{\ell} \sigma\left[\alpha \Omega r \cos \beta  +  r^2(\dot{\beta}  +  \Omega)\right] d r \mathbf{k}.                  (10.41f)

An easy integration yields

\mathbf{h}_Q(\mathscr{B}, t)=\left[\frac{m \ell}{2} \alpha \Omega \cos \beta  +  \frac{m \ell^2}{3}(\dot{\beta}  +  \Omega)\right] \mathbf{k}.                     (10.41g)

See Problem 10.4.

Screenshot 2022-10-15 144156

Related Answered Questions

Question: 10.16

Verified Answer:

The resultant force R exerted on the rod by the sm...