Question 10.4: Use the results for Example 10.3, page 424, to determine (i)...

Use the results for Example 10.3, page 424, to determine (i) the total torque about the hinge Q, and (ii) the total torque about the center of mass C, required to sustain the motion of the thin rod.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Solution of (i). The total torque about the moving point Q in Fig. 10.6 can be found from either (10.42) or (10.46) . Let us consider (10.46), note that

\mathbf{M}_Q(\mathscr{B}, t)=\dot{\mathbf{h}}_Q(\mathscr{B}, t)  +  \mathbf{v}_Q \times \mathbf{p}^*(\mathscr{B}, t)                             (10.42)

\mathbf{M}_Q(\mathscr{B}, t)=\dot{\mathbf{h}}_{r Q}(\mathscr{B}, t)+\mathbf{r}^*(\mathscr{B}, t) \times m(\mathscr{B}) \mathbf{a}_Q                        (10.46)

\mathbf{r}^*(\mathscr{B}, t) \times m \mathbf{a}_Q=-\frac{\ell}{2} \mathbf{i} \times m \alpha \Omega^2 \mathbf{a}=\frac{m \alpha \ell}{2} \Omega^2 \sin \beta \mathbf{k},                                (10.50a)

and recall  \mathbf{h}_{r Q}=\left(m \ell^2 / 3\right)(\dot{\beta}  +  \Omega) \mathbf{k},  which is a vector referred to the moving rod frame 2 whose total angular velocity is  \omega_f=(\Omega  +  \dot{\beta}) \mathbf{k}  in (10.41b).

\boldsymbol{\omega}=(\dot{\beta}  +  \Omega) \mathbf{k}                  (10.41b)

Because  \omega_f  is parallel to  \mathbf{h}_{r Q},  (10.49) simplifies to

\mathbf{M}_Q(\mathscr{B}, t)=\frac{d \mathbf{h}_{r Q}(\mathscr{B}, t)}{d t}=\frac{\delta \mathbf{h}_{r Q}(\mathscr{B}, t)}{\delta t}  +  \omega_f \times \mathbf{h}_{r Q}(\mathscr{B}, t)                    (10.49)

\dot{\mathbf{h}}_{r Q}(\mathscr{B}, t)=\frac{\delta \mathbf{h}_{r Q}(\mathscr{B}, t)}{\delta t}=\frac{m \ell^2}{3} \ddot{\beta} \mathbf{k} .                       (10.50b)

Hence , use of (10.50a) and (10.50b) in (10.46) delivers the total torque about Q required to sustain the motion of the connecting rod:

\mathbf{M}_Q(\mathscr{B}, t)=\left(\frac{m \ell^2}{3} \ddot{\beta}  +  \frac{m \alpha \ell}{2} \Omega^2 \sin \beta\right) \mathbf{k} .               (10.50c)

The reader may show that (10.42) delivers the same result.

Solution of (ii). Now let us consider Euler’s simple rule (10.48) for the moving center of mass and recall the definition (10.39) in which \rho(P, t)=\rho \mathbf{i}  denotes the position vector of a material point P at ρ from the center of  mass C. Then , with the aid of (10.41b), the relative rigid body velocity of  \dot{\rho}(P, t)=\boldsymbol{\omega} \times \rho=\rho(\dot{\beta}+\Omega) \mathbf{j}, d m=\sigma d \rho,  and by (10.39), the moment of  momentum relative C may be written as

\mathbf{M}_C(\mathscr{B}, t)=\dot{\mathbf{h}}_{r C}(\mathscr{B}, t)                         (10.48)

\mathbf{h}_C(\mathscr{B}, t)=\int_{\mathscr{B}} \rho(P, t) \times \dot{\rho}(P, t) d m(P)=\mathbf{h}_{r C}(\mathscr{B}, t)                          (10.39)

\mathbf{h}_{r c}=\sigma(\dot{\beta}  +  \Omega) \int_{-\ell / 2}^{\ell / 2} \rho^2 d \rho \mathbf{k}=m(\dot{\beta}  +  \Omega) \frac{\ell^2}{12} \mathbf{k}                          (10.50d)

This vector is parallel to  \boldsymbol{\omega}_f=\boldsymbol{\omega},  and hence (10.48) and (10.49) yield the  total torque about C needed to sustain the rod’s motion in the machine  frame, i.e.

\mathbf{M}_C(\mathscr{B}, t)=\dot{\mathbf{h}}_{r C}(\mathscr{B}, t)=\frac{m \ell^2}{12} \ddot{\beta}(t) \mathbf{k}.                         (10.50e)

 

 

Screenshot 2022-10-15 174747

Related Answered Questions

Question: 10.16

Verified Answer:

The resultant force R exerted on the rod by the sm...