Question 10.14: Gravitational potential energy. Determine the total gravitat...

Gravitational potential energy. Determine the total gravitational potential energy of a body  \mathscr{B}  in a uniform gravitational field of  strength g per unit mass a of   \mathscr{B}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The constant gravitational force per unit mass is a conservative force distribution given by

\mathbf{f} \equiv \mathbf{g}=-\nabla \psi,                (10.129a)

in which  \psi  is the gravitational potential energy density per unit mass σ. Form the scalar product  \mathbf{g} \cdot d \mathbf{x}=-\nabla \psi \cdot d \mathbf{x}=-d \psi,  which is equivalent to (10.125), and integrate this equation over the path traversed by the body point at x to obtain the potential energy   \psi(\mathbf{x})  per unit mass,

\mathbf{v} \cdot \mathbf{f}=-\nabla \psi \cdot \mathbf{v}=-\frac{\partial \psi}{\partial \mathbf{x}} \cdot \frac{d \mathbf{x}}{d t}=-\frac{d \psi(\mathbf{x})}{d t}                       (10.125)

\psi(\mathbf{x})=-\mathbf{g} \cdot \Delta \mathbf{x}                        (10.129b)

where   \Delta \mathbf{x} \equiv \mathbf{x}(P, t)  –  \mathbf{x}\left(P, t_0\right).  Then for a uniform gravitational field strength g and with  \sigma \equiv m  in (10.127) , we obtain

V(\mathscr{B}) \equiv \int_{\mathscr{B}} \psi(\mathbf{x}) d \sigma(P),                (10.127)

V(\mathscr{B})=\int_{\mathscr{B}} \psi(\mathbf{x}) d m=-\mathbf{g} \cdot \int_{\mathscr{B}} \Delta \mathbf{x} d m=-\mathbf{g} \cdot m \Delta \mathbf{x}^*,                      (10.129c)

where, from (5.12),  \Delta \mathbf{x}^*  is the displacement vector of the center of mass of   \mathscr{B}.  With  \mathbf{g}=-g \mathbf{k},  this delivers V = mgh in which  h \equiv \mathbf{k} \cdot \Delta \mathbf{x}^*=\Delta z^*  is the vertical displacement of the center of mass, a rule similar to the familiar particle relation (7.60). Thus, the total gravitational potential energy of a rigid body in a uniform gravitational field is equal to the gravitational potential energy of its center of mass particle.

m(\mathscr{B}) \mathbf{x}^*(\mathscr{B}, t)=\int_{\mathscr{B}} \mathbf{x}(P, t) d m(P)                  (5.12)

V_g=m g h               (7.60)

Related Answered Questions

Question: 10.16

Verified Answer:

The resultant force R exerted on the rod by the sm...