Question 8.3: Sketch the air-standard Diesel cycle on a PV diagram, and de...

Sketch the air-standard Diesel cycle on a PV diagram, and derive an equation giving the thermal efficiency of this cycle in relation to the compression ratio r (ratio of volumes at the beginning and end of the compression step) and the expansion ratio r_e (ratio of volumes at the end and beginning of the adiabatic expansion step).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The air-standard Diesel cycle is the same as the air-standard Otto cycle, except that the heat-absorption step (corresponding to the combustion process in the actual engine) is at constant pressure, as indicated by line DA in Fig. 8.10.

On the basis of 1 mol of air in its ideal-gas state with constant heat capacities, the heat quantities absorbed in step DA and rejected in step BC are:

Q_{DA} = C_{P}^{ig} ( T_A  −  T_D )                and               Q_{BC} = C_{V}^{ig} ( T_C  −  T_B )

The thermal efficiency, Eq. (8.3), is:

\eta=\frac{-W(\text { net })}{Q_{D A}}=\frac{Q_{D A}+Q_{B C}}{Q_{D A}}            (8.3)

\eta=1+\frac{Q_{B C}}{Q_{D A}}=1+\frac{C_V^{i g}\left(T_C-T_B\right)}{C_P^{i g}\left(T_A-T_D\right)}=1-\frac{1}{\gamma}\left(\frac{T_B-T_C}{T_A-T_D}\right)           (A)

For reversible, adiabatic expansion (step AB) and reversible, adiabatic compression (step CD), Eq. (3.23a) applies:

T ( V^{ ig} )^{γ − 1}   = const        (3.23a)

T_A V_A^{\gamma-1}=T_B V_B^{\gamma-1} \quad \text { and } \quad T_D V_D^{\gamma-1}=T_C V_C^{\gamma-1}

By definition, the compression ratio is r \equiv V_C^{i g} / V_D^{i g} , and the expansion ratio is r_e \equiv V_B^{i g} / V_A^{i g} . Thus,

T_B=T_A\left(\frac{1}{r_e}\right)^{\gamma-1} \quad T_C=T_D\left(\frac{1}{r}\right)^{\gamma-1}

Substituting these equations into Eq. (A) gives:

\eta=1-\frac{1}{\gamma}\left[\frac{T_A\left(1 / r_e\right)^{\gamma-1}-T_D(1 / r)^{\gamma-1}}{T_A-T_D}\right]             (B)

Also P_A = P_D , and for the ideal-gas state,

P_D V_D^{i g}=R T_D \quad \text { and } \quad P_A V_A^{i g}=R T_A

Moreover, V_C^{i g}=V_B^{i_g} , and therefore:

\frac{T_D}{T_A}=\frac{V_D^{i g}}{V_A^{i g}}=\frac{V_D^{i g} / V_C^{i g}}{V_A^{i g} / V_B^{i g}}=\frac{r_e}{r}

This relation combines with Eq. (B):

\eta=1-\frac{1}{\gamma}\left[\frac{\left(1 / r_e\right)^{\gamma-1}-\left(r_e / r\right)(1 / r)^{\gamma-1}}{1-r_e / r}\right]

or               \eta=1-\frac{1}{\gamma}\left[\frac{\left(1 / r_e\right)^\gamma-(1 / r)^\gamma}{1 / r_e-1 / r}\right]             (8.7)

8.10

Related Answered Questions