Question 11.4: Derive the equation of motion for a particle P that falls fr...

Derive the equation of motion for a particle P that falls from rest in a Stokes medium .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The kinetic energy of P is   T=\frac{1}{2} m \dot{y}^2,  its gravitational potential energy is  V=-m g y,  and the nonconservative Stoke s force is   \mathbf{F}=-c \mathbf{v}=-c \dot{y} \mathbf{j},   where j is the downward direction of the motion . Let the reader  apply the method of virtual work to find  Q_1^N.  Here we consider (11.20). Accordingly, with  q_1=y,  the nonconservative generalized force in (11.38) is  Q_1^N=\mathbf{F} \cdot \partial \mathbf{v} / \partial \dot{q}_1=-c \dot{y} \mathbf{j} \cdot \mathbf{j}=-c \dot{y}.  Now form the Lagrangian   L=T-V=\frac{1}{2} m \dot{y}^2+m g y,  and apply (11.38) to obtain the equation of motion  m \ddot{y}-m g=-c \dot{y} .  That is, with  v=\dot{y}  and  \nu=c / m,  we recover (6.34a):  d v / d t=g  –  v v

Q_k=\mathbf{F} \cdot \frac{\partial \mathbf{v}}{\partial \dot{q}_k}.                            (11.20)

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_k}\right)  –  \frac{\partial L}{\partial q_k}=Q_k^N .                    (11.38)

\frac{d v}{d t}=g  –  v v \equiv F(v) \quad \text { with } \quad v \equiv \frac{c}{m}                   (6.34a)

Related Answered Questions

Question: 11.1

Verified Answer:

The three independent generalized coordinates and ...