Question 11.7: A nonconservative holonomic system having two degrees of fre...

A nonconservative holonomic system having two degrees of freedom with generalized coordinates  \left(q_1, q_2\right)  and corresponding generalized forces  Q_1^N=-m b^2 v \dot{q}_1, Q_2^N=0,  has a Lagrangian function

L=\frac{1}{2} m a^2 \sin ^2 q_1  +  m b^2\left(\dot{q}_2  +  \frac{a}{b} \cos q_1\right)^2  +  \frac{1}{2} m b^2\left(\dot{q}_1  +  c\right)^2,                        (11.48a)

in which a, b, c, and m are constants. Derive the Lagrange equations.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Notice that  q_2  is ignorable and  Q_2^N=0.  Therefore, we have  immediately by (11.47) the corresponding momentum integral

p_e\left(\dot{q}_r, q_r, t\right)=\frac{\partial L\left(\dot{q}_r, q_r, t\right)}{\partial \dot{q}_e}=\gamma_e, \text { a constant. }                                (11.47)

p_2=\frac{\partial L}{\partial \dot{q}_2}=2 m b^2\left(\dot{q}_2  +  \frac{a}{b} \cos q_1\right)=\gamma_2, \text { a constant. }                          (11.48b)

Caution:We must continue to apply the Lagrange equations to  (11.48a) in which all of the variables are considered independent. Equation (11.48b) is a partial solution of one of these equations that necessarily relates these variables; but it is not to be substituted into the Lagrangian, it is to be used in connection with the companion equation for  q_1.  The second of Lagrange’s equations (11.38) yields

m b^2 \ddot{q}_1  +  2 m a b\left(\dot{q}_2  +  \frac{a}{b} \cos q_1\right) \sin q_1  –  m a^2 \sin q_1 \cos q_1=Q_1^N=-m b^2 v \dot{q}_1 .                          (11.48c)

We now use (11.48b) to eliminate  \dot{q}_2  from (11.48c) to obtain

\ddot{q}_1  +  v \dot{q}_1  +  \frac{a}{b} \sin q_1\left(\frac{\gamma_2}{m b^2}  –  \frac{a}{b} \cos q_1\right)=0                            (11.48d)

The two equations (11.48b) and (11.48d), in principle, determine  q_1(t)  and  q_2(t).

Related Answered Questions

Question: 11.4

Verified Answer:

The kinetic energy of P is   T=\frac{1}{2} ...
Question: 11.1

Verified Answer:

The three independent generalized coordinates and ...