Question 3.26: Analyze the rational canonical form

Analyze the rational canonical form

A = \left [ \begin{matrix} 0 & 1 & 0 & 0 & \vdots & & & & & \\ 0 & 0 & 1 & 0 & \vdots & & & & & \\ 0 & 0 & 0 & 1 & \vdots & & & & & \\ -1 & -2 & -3 & -2 & \vdots & & & & & \\\ldots & \ldots & \ldots & \ldots &\vdots & \ldots & \ldots & \ldots & & \\ & & &  & \vdots & 0 & 1 & \vdots & & \\ & & &  & \vdots & -1 & -1 & \vdots & & \\ & & & &\vdots &\ldots &\ldots & \vdots & \ldots &\ldots \\ & & & & & &  & \vdots & 0 & 1  \\ & & & & & &  & \vdots & -1 & 1 \end{matrix} \right ] _{8 \times 8}

= \left[\begin{matrix} R_{1} &  & 0 \\ \ & R_{2} &  \\ 0 &  & R_{3} \end{matrix} \right] .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Analysis The characteristic polynomial is

det \left(A-tI_{8}\right) = det\left(R_{1}-tI_{4}\right) det\left(R_{2}-tI_{2}\right) det\left(R_{3}-tI_{2}\right)

= \left(t^{2}+t+1\right) ^{2} \cdot \left(t^{2}+t+1\right)\cdot \left(t^{2}-t+1\right)

= \left(t^{2}+t+1\right) ^{3}\left(t^{2}-t+1\right).

For computations concerned with block matrices, refer to Ex. <C> of Sec. 2.7.5. Let N =\left\{\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots , \overrightarrow{e_{8}} \right\} be the natural basis for R^{8}.

For R_{1}   and  R_{2}:

\overrightarrow{e_{1}}A=\overrightarrow{e_{2}},

\overrightarrow{e_{2}}A=\overrightarrow{e_{3}}=\overrightarrow{e_{1}}A^{2} ,

\overrightarrow{e_{3}}A=\overrightarrow{e_{4}}=\overrightarrow{e_{1}}A^{3} ,

\overrightarrow{e_{4}}A=-\overrightarrow{e_{1}}-2\overrightarrow{e_{2}}-3 \overrightarrow{e_{3}} -2 \overrightarrow{e_{4}}

= -\overrightarrow{e_{1}}-2\overrightarrow{e_{1}}A -3\overrightarrow{e_{1}}A^{2} -2 \overrightarrow{e_{1}}A^{3}=\overrightarrow{e_{1}}A^{4}

\Rightarrow \overrightarrow{e_{i}} \left(A^{4}+2A^{3}+3A^{2}+I_{8}\right)=\overrightarrow{e_{i}} \left(A^{2}+A+I_{8}\right)^{2}=\overrightarrow{0}  for 1≤ i ≤ 4;

\overrightarrow{e_{5}}A=\overrightarrow{e_{6}},

\overrightarrow{e_{6}}A=-\overrightarrow{e_{5}}A-\overrightarrow{e_{6}}=-\overrightarrow{e_{5}}-\overrightarrow{e_{5}}A=\overrightarrow{e_{5}}\left(-I_{8}-A\right)=\overrightarrow{e_{5}}A^{2}

\Rightarrow \overrightarrow{e_{i}} \left(A^{2}+A+I_{8}\right)=\overrightarrow{0}  fori = 5, 6.

Also, compute the ranks as follows:

A^{2}= \left[\begin{matrix} R^{2}_{1} &  & 0 \\ \ & R^{2}_{2} &  \\ 0 &  & R^{2}_{3} \end{matrix} \right]

= \left [ \begin{matrix} 0 & 0 & 1 & 0 & \vdots & & & & & \\ 0 & 0 & 0 & 1 & \vdots & & & & & \\ -1 & -2 & -3 & -2 & \vdots & & & & & \\ 2 & 3 & 4 & 1 & \vdots & & & & & \\\ldots & \ldots & \ldots & \ldots &\vdots & \ldots & \ldots & \ldots & & \\ & & &  & \vdots & -1 & -1 & \vdots & & \\ & & &  & \vdots & 1 & 0 & \vdots & & \\ & & & &\vdots &\ldots &\ldots & \vdots & \ldots &\ldots \\ & & & & & &  & \vdots & -1 & 1  \\ & & & & & &  & \vdots & -1 & 0 \end{matrix} \right ]

\Rightarrow A^{2}+A+I_{8}= \left [ \begin{matrix} 1 & 1 & 1 & 0 & \vdots & & & & & \\ 0 & 1 & 1 & 1 & \vdots & & & & & \\ -1 & -2 & -2 & -1 & \vdots & & & & & \\ 1 & 1 & 1 & 0 & \vdots & & & & & \\\ldots & \ldots & \ldots & \ldots &\vdots & \ldots & \ldots & \ldots & & \\ & & &  & \vdots & 0 & 0 & \vdots & & \\ & & &  & \vdots & 0 & 0 & \vdots & & \\ & & & &\vdots &\ldots &\ldots & \vdots & \ldots &\ldots \\ & & & & & &  & \vdots & 0 & 2  \\ & & & & & &  & \vdots & -2 & 2 \end{matrix} \right ]

\Rightarrow \left(A^{2}+A+I_{8} \right)=4;

\Rightarrow \left(A^{2}+A+I_{8} \right)^{2}=\left [ \begin{matrix} O_{4 \times 4} &  &  &  &  \\  & O_{2 \times 2} &  &  &  \\  &  & \vdots & \ldots & \ldots \\  &  & \vdots & -4 & 4 \\  &  & \vdots & -4 & 0 \end{matrix} \right ] {8 \times 8}

\Rightarrow r\left(A^{2}+A+I_{8} \right)^{k}=2  for k ≥ 2.

These relations together provide the following information:

1. Let p_{1}\left(t\right)=t^{2}+t+1. The set

K_{p_{1}}= \left\{\overrightarrow{x} \in R^{8} \mid \overrightarrow{x} \left(A^{2}+A+I_{8} \right)^{3}=\overrightarrow{0}\right\}=Ker   p_{1}\left(A\right)^{3}

= \ll \overrightarrow{e_{1}}, \ldots , \overrightarrow{e_{4}},\overrightarrow{e_{5}},\overrightarrow{e_{6}}\gg = \ll \overrightarrow{e_{1}}, \overrightarrow{e_{2}} , \overrightarrow{e_{3}},\overrightarrow{e_{4}}\gg \oplus  \ll \overrightarrow{e_{5}}, \overrightarrow{e_{6}}\gg

is an invariant subspace of R^{8} of dimension equal to

3·2 = (the algebraic multiplicity 3 of p_{1}\left(t\right) ) . (the degree of p_{1}\left(t\right) )  =6.

2.K_{p_{1}} contains an invariant subspace

\ll \overrightarrow{e_{1}}, \overrightarrow{e_{2}} , \overrightarrow{e_{3}},\overrightarrow{e_{4}}\gg = \ll \overrightarrow{e_{1}},\overrightarrow{e_{1}}A,\overrightarrow{e_{1}}A^{2},\overrightarrow{e_{1}}A^{3}\gg=C\left(\overrightarrow{e_{1}}\right)

which is an A-cycle of length 4 = degree of p_{1}\left(t\right)^{2}.Note that p_{1}\left(A\right)^{2} is an annihilator of C_{A}\left(\overrightarrow{e_{1}}\right), simply denoted by C\left(\overrightarrow{e_{1}}\right), of least degree, i.e.

p_{1}\left(A\right)^{2} \mid_{C\left(\overrightarrow{e_{1}}\right)}=O _{4 \times 4}.

3.K_{p_{1}} contains another invariant subspace

\ll \overrightarrow{e_{5}},\overrightarrow{e_{6}} \gg= \ll \overrightarrow{e_{5}},\overrightarrow{e_{5}}A \gg = C\left(\overrightarrow{e_{5}}\right)

which is an A-cycle of length 2 = degree of p_{1}\left(t\right). Note that p_{1}\left(A\right) s an annihilator of C_{A}\left(\overrightarrow{e_{5}}\right) of least degree, i.e.

p_{1}\left(A\right) \mid_{C_{A}\left(\overrightarrow{e_{5}}\right)}=O _{2 \times 2}.

4. Solve

\overrightarrow{x} p_{1}\left(A\right)= \overrightarrow{0}  for  \overrightarrow{x} \in R^{8}

\Rightarrow \overrightarrow{x} =x_{3} \left(1,1,1,0,0,0,0,0\right)+ x_{4} \left(-1,0,0,1,0,0,0,0\right)+\left(0,0,0,0,x_{5},x_{6},0,0\right)

\Rightarrow Ker  p_{1}\left(A\right)= \ll \overrightarrow{v_{1}},\overrightarrow{v_{2}},\overrightarrow{e_{5}},\overrightarrow{e_{6}}\gg where

\overrightarrow{v_{1}} =\left(1,1,1,0,0,0,0,0\right)  and  \overrightarrow{v_{2}} =\left(-1,0,0,1,0,0,0,0\right).

5. Solve

\overrightarrow{x} p_{1}\left(A\right)^{2}= \overrightarrow{0}

\Rightarrow Ker  p_{1}\left(A\right)^{2}= \ll \overrightarrow{e_{1}},\overrightarrow{e_{2}},\overrightarrow{e_{3}},\overrightarrow{e_{4}},\overrightarrow{e_{5}},\overrightarrow{e_{6}}\gg.

Hence

Ker  p_{1}\left(A\right)^{2}= \ll \overrightarrow{e_{1}},\overrightarrow{e_{2}},\overrightarrow{e_{3}},\overrightarrow{e_{4}}\gg \oplus  \ll \overrightarrow{e_{5}},\overrightarrow{e_{6}}\gg

= \ll \overrightarrow{v_{1}},\overrightarrow{v_{2}},\overrightarrow{e_{3}},\overrightarrow{e_{4}}\gg \oplus  \ll \overrightarrow{e_{5}},\overrightarrow{e_{6}}\gg.

6. Take any vector \overrightarrow{v} \in Ker  p_{1}\left(A\right)^{2} but not in Ker  p_{1}\left(A\right), say \overrightarrow{v} = \overrightarrow{e_{3}}+\overrightarrow{e_{4}}.

Then

\overrightarrow{v}A = \left(-1,-2,-3,-1,0,\dots , 0\right),

\overrightarrow{v}A ^{2}= \left(1,1,1,-1,0,\dots , 0\right),

\overrightarrow{v}A^{4} = \left(-3,-5,-6,-2,0,\dots , 0\right)= -\overrightarrow{v} -2\overrightarrow{v}A-3\overrightarrow{v}A ^{2}-2\overrightarrow{v}A ^{3}.

Also, B_{\overrightarrow{v}}=\left\{\overrightarrow{v},\overrightarrow{v}A,\overrightarrow{v}A ^{2},\overrightarrow{v}A ^{3}\right\} is a basis for Ker  p_{1}\left(A\right)^{2}. In B_{\overrightarrow{v}},

\left[A \mid_{Ker p_{1}\left(A\right)^{2}}\right]_{B_{\overrightarrow{v}}}=R_{1}.

The matrix R_{1}is called the companion matrix of  p_{1}\left(t\right)^{2} = t^{4}+2t^{3}+3t^{2}-2t+1. Take any vector \overrightarrow{u} \in Ker  p_{1}\left(A\right), say \overrightarrow{u} =\overrightarrow{v_{1}}. Then

\overrightarrow{u}A= \left(0,1,1,1,0,0,0,0\right),

\overrightarrow{u}A^{2}= \left(-1,2,-2,-1,0,0,0,0\right)= -\overrightarrow{u}-\overrightarrow{u}A

and B_{\overrightarrow{u}}= \left\{\overrightarrow{u} ,\overrightarrow{u}A\right\} is a basis for Ker  p_{1}\left(A\right).  In  B_{\overrightarrow{u}},

\left[A \mid_{Ker p_{1}\left(A\right)}\right]_{B_{\overrightarrow{u}}}=R_{2}.

The matrix R_{2} is called the companion matrix of  p_{1}\left(t\right) = t^{2}+t+1.

7. It can be show that B_{\overrightarrow{v}} \cup  B_{\overrightarrow{u}} is linearly independent. Hence B_{\overrightarrow{v}} \cup  B_{\overrightarrow{u}} is a basis for Ker  p_{1}\left(A\right)^{3}=Ker  p_{1}\left(A\right)^{2}. Notice that

Where the 2 in \frac{1}{2} is the degree of p_{1}\left(t\right). Also,

dim  Ker  p_{1}\left(A\right)^{3}= deg  p_{1}\left(t\right)^{2} + deg p_{1}\left(t\right)

= 2· 2 + 2 · 1
= 2· 3
= (the degree of p_{1}\left(t\right). ) · (the number of dots)

Combining together, we get

\left[A \mid_{Ker p_{1}\left(A\right)^{3}}\right]_{B_{\overrightarrow{v}} \cup B_{\overrightarrow{u}}}=\begin{bmatrix} R_{1} & 0 \\ 0 & R_{2} \end{bmatrix}_{6 \times 6} .      \left(*_{1}\right)

For R_{3}:

\overrightarrow{e_{7}}A=\overrightarrow{e_{8}},

\overrightarrow{e_{8}}A=\left(0,\ldots,0,-1,1\right)=-\overrightarrow{e_{7}}+\overrightarrow{e_{8}}=-\overrightarrow{e_{7}}+\overrightarrow{e_{7}}A=\overrightarrow{e_{7}}A^{2}

\Rightarrow \overrightarrow{e_{i}} \left(A^{2}-A+I_{8}\right)=\overrightarrow{0}  fori = 7, 8.

Also,

A^{2}-A+I_{8}= = \left [ \begin{matrix} 0 & -1 & 1 & 0 & \vdots & & & & & \\ 0 & 0 & -1 & 0 & \vdots & & & & & \\ -1 & -2 & -3 & -3 & \vdots & & & & & \\ 3 & 5 & 7 & 3 & \vdots & & & & & \\\ldots & \ldots & \ldots & \ldots &\vdots & \ldots & \ldots & \ldots & & \\ & & &  & \vdots & -1 & 2 & \vdots & & \\ & & &  & \vdots & 2 & 1 & \vdots & & \\ & & & &\ldots &\ldots &\ldots & \vdots & \ldots &\ldots \\ & & & & & &  & \vdots & 0 & 0  \\ & & & & & &  & \vdots & 0 & 0 \end{matrix} \right ]

\Rightarrow r\left(A^{2}-A+I_{8}\right)=6

\Rightarrow r\left(A^{2}-A+I_{8}\right)^{k}=2  for k ≥ 2.

These facts provide the following information:

1. Set  p_{2}\left(t\right) = t^{2}-t+1. Then

Ker  p_{2}\left(A\right) = \left\{\overrightarrow{x} \in R^{8} \mid p_{2}\left(A\right) =\overrightarrow{0} \right\}

is an invariant subspace of dimension 2, the degree of p_{2}\left(t\right).

2. Ker  p_{2}\left(A\right) = \ll \overrightarrow{e_{7}},\overrightarrow{e_{8}}\gg=\ll \overrightarrow{e_{7}},\overrightarrow{e_{7}}A\gg= C\left(\overrightarrow{e_{7}}\right) is an A-cycle of length 2 which is annihilated by p_{2}\left(t\right), i.e.

p_{2}\left(A\right) \mid_{C\left(\overrightarrow{e_{7}}\right)}=O_{2 \times 2}.

3. Solve

\overrightarrow{x} p_{2}\left(A\right)=\overrightarrow{0}  for  \overrightarrow{x} \in R^{8}

\Rightarrow Ker  p_{2}\left(A\right)= \ll \overrightarrow{e_{7}},\overrightarrow{e_{8}}\gg  as it should be by 2.

4. Take any nonzero vector \overrightarrow{w} \in Ker  p_{2}\left(A\right),  say  \overrightarrow{w}=\alpha \overrightarrow{e_{7}}+\beta  \overrightarrow{e_{8}}. Then

\overrightarrow{w} A = \alpha \overrightarrow{e_{7}}A+\beta  \overrightarrow{e_{8}}A= \alpha \overrightarrow{e_{7}}A+\beta  \overrightarrow{e_{8}}A^{2} =-\beta  \overrightarrow{e_{7}}+\left(\alpha+\beta \right)\overrightarrow{e_{8}}

\Rightarrow \overrightarrow{w} A^{2} = -\beta  \overrightarrow{e_{7}}A+\left(\alpha+\beta \right)\overrightarrow{e_{8}}A = -\beta  \overrightarrow{e_{7}}A+\left(\alpha+\beta \right) \left(-\overrightarrow{e_{7}}+\overrightarrow{e_{7}}A\right)

= – \left(\alpha+\beta \right) \overrightarrow{e_{7}}+\alpha\overrightarrow{e_{7}}A

= -\overrightarrow{w}+\overrightarrow{w} A

Then B_{\overrightarrow{w}}=\left\{\overrightarrow{w},\overrightarrow{w} A\right\} is a basis for Ker    p_{2}\left(A\right).The matrix

\left[A \mid _{Ker    p_{2}\left(A\right)}\right]_{B_{\overrightarrow{w}}}=R_{3}    \left(*_{2}\right)

is called the companion matrix of p_{2}\left(t\right)=t^{2}-t+1.

5. Notice that

Putting \left(*_{1}\right)  and  \left(*_{2}\right) together, let

B= B_{\overrightarrow{v}} \cup  B_{\overrightarrow{u}} \cup B_{\overrightarrow{w}} = \left\{\overrightarrow{v},\overrightarrow{v}A,\overrightarrow{v}A^{2},\overrightarrow{v}A^{3},\overrightarrow{u},\overrightarrow{u}A,\overrightarrow{w},\overrightarrow{w}A\right\} .

B is basis for R^{8} and is called a rational canonical basis of A. In B,

\left[A\right]_{B}=PAP^{-1}= \left[\begin{matrix} R_{1} &  & 0 \\  & R_{2} & 0 \\ 0 &  & R_{3} \end{matrix} \right] ,      where  P = \left[\begin{matrix} \overrightarrow{v} \\ \overrightarrow{v}A \\ \vdots  \\ \overrightarrow{w}A \end{matrix} \right] _{8 \times 8}

is called the rational canonical form of A.

16
17

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...