Question 11.5: (a) Derive the Lagrange equations of motion for a heavy bead...

(a) Derive the Lagrange equations of motion for a heavy bead of mass m that slides freely in a smooth circular tube of radius a, as the tube  spins with constant angular speed   \dot{\phi}=\omega  about its fixed vertical axis, as shown in the diagram for Problem 6.66. Obtain the first integral of the equation of motion, and find the tangential constraint force normal to the plane of the tube. (b) Relax the rheonomic constraint, treat  \phi(t)  as an independent generalized coordinate, and derive the Lagrange equations of motion for the bead.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Solution of (a). Introduce the spherical coordinates  (a, \phi, \theta)  of the bead in its constrained motion referred to a moving, spherical reference frame   \psi=\left\{O ; \mathbf{e}_r, \mathbf{e}_\phi, \mathbf{e}_\theta\right\}  in which  \mathbf{e}_k  are in the  directions of their increasing coordinates, and note that the angle between k and   \mathbf{e}_r,  in the problem diagram is  \pi-\theta \text {. } The workless scleronomic constraint is r = a, constant, and the working  rheonomic constraint is  \dot{\phi}=\omega, \text { a constant },  that is,  \phi=\phi_0  +  \omega t.  Notice, alternatively, that a rheonomic constraint   \dot{\phi}=\omega(t),  a specified function of t , also is holonomic with  \phi=\phi_0  +  \int_{t_0}^t \omega(t) d t.  In either instance,   \phi  is a specified function of time; it is not a generalized coordinate. The radial component of the  nonconservative force   \mathbf{F}=-N \mathbf{e}_r  +  R \mathbf{e}_\phi,  exerted by the tube on the mass m is workless, but due to the moving tube constraint the component R perpendicular to the plane of the tube is not, so the system is nonconservative. Nevertheless, the virtual work done by this force in the virtual displacement   \delta \mathbf{x}=a \delta \theta \mathbf{e}_\theta  +  a \sin \theta \delta \phi \mathbf{e}_\phi,  compatible with the constraint   \delta \phi=\omega \delta t \equiv 0  vanishes,   \delta \mathscr{W}=\mathbf{F} \cdot \delta \mathbf{x}=R a \sin \theta \delta \phi=0,  because the moving constraint in the  virtual displacement is frozen . The bead has one degree of freedom described by  q_1=\theta  the corresponding generalized force  Q_\theta^N=0.  The gravitational potential energy of m is given by

V=m g a(1  –  \cos \theta).         (11.39a)

The absolute velocity of the bead is   \mathbf{v}=a \dot{\phi} \sin \theta \mathbf{e}_\phi  +  a \dot{\theta} \mathbf{e}_\theta,  and  hence its total kinetic energy is

T=\frac{1}{2} m a^2\left(\dot{\phi}^2 \sin ^2 \theta  +  \dot{\theta}^2\right).                    (11.39b)

Now introduce  \dot{\phi}=\omega,  a constant, form the Lagrangian function (11.34),

L\left(\dot{q}_r, q_r, t\right) \equiv T\left(\dot{q}_r, q_r, t\right)  –  V\left(q_r\right)                  (11.34)

L=\frac{1}{2} m a^2\left(\omega^2 \sin ^2 \theta  +  \dot{\theta}^2\right)  –  m g a(1  –  \cos \theta),                        (11.39c)

and thus derive

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=m a^2 \ddot{\theta}, \quad \frac{\partial L}{\partial \theta}=m a^2 \omega^2 \sin \theta \cos \theta  –  m g a \sin \theta.              (11 .39d)

Collecting the results in (11.38), we reach the Lagrange equation of  motion for the bead :

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_k}\right)-\frac{\partial L}{\partial q_k}=Q_k^N                  (11.38)

\ddot{\theta}  +  \sin \theta\left(\frac{g}{a}  –  \omega^2 \cos \theta\right)=0 .                   (11.39e)

Notice that the result is independent of the mass m

Equation (11.39e) written as  \ddot{\theta}=\dot{\theta} d \dot{\theta} / d \theta=f(\theta)  has an easy first  integral given by

\dot{\theta}^2=\dot{\theta}_0^2  +  \omega^2\left(\sin ^2 \theta  –  \sin ^2 \theta_0\right)  +  \frac{2 g}{a}\left(\cos \theta  –  \cos \theta_0\right),                         (11.39f)

in which \dot{\theta}_0=\dot{\theta}(0) and   \theta_0=\theta(0)  denote the initial values. For small angular hoop speeds the  term in  \omega^2  may be neglected to obtain from (11.39e) and (11.39f )  the equation of motion and its first integral for the finite amplitude  oscillations of the bead as an equivalent simple pendulum.

The constraint force R is not determined; it is inconsequential to  the determination of the general motion of the bead by Lagrange’s method. Nevertheless, we can find R easily by writing the moment of momentum equation about the z-axis, The bead is at the instantaneous distance  a \sin \theta  from this axis, and its momentum in the direction perpendicular to the plane of the tube is   \operatorname{ma\omega } \sin \theta,  Therefore, the moment of momentum of the bead about the axis of rotation is  h_z=m a^2 \omega \sin ^2 \theta.  The constraint driving torque relation about the spin axis is given by   \dot{h}_z=R a \sin \theta;  and hence

R=2 m a \omega \dot{\theta} \cos \theta.                (11.39g)

Solution of (b). Now consider a different situation in which we ignore the rheonomic constraint and treat   \phi(t)  as an independent variable . The bead now has two degrees of freedom described by  \left(q_1, q_2\right)=(\theta, \phi)  with the corresponding nonconservative generalized forces   \left(Q_\theta^N, Q_\phi^N\right).  The virtual work done by these forces is given by  \delta \mathscr{W}=\mathbf{F} \cdot \delta \mathbf{x}=R a \sin \theta \delta \phi=Q_\theta^N \delta \theta  +  Q_\phi^N \delta \phi  for all  \delta \theta  and  \delta \phi,  and hence

Q_\theta^N=0, \quad Q_\phi^N=R a \sin \theta.                    (11.39h)

The Lagrangian  L=\frac{1}{2} m a^2\left(\dot{\phi}^2 \sin ^2 \theta  +  \dot{\theta}^2\right)  –  m g a(1  –  \cos \theta)  is the  same as (11.39c) in which   \omega=\dot{\phi}.  In addition to (11.39d), we now have

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}}\right)=m a^2 \ddot{\phi} \sin ^2 \theta  +  2 m a^2 \dot{\phi} \dot{\theta} \sin \theta \cos \theta, \quad \frac{\partial L}{\partial \phi}=0 .                         (11.39i)

Assembling the results (11.39d), (11.39h), and (11.39i) in (11.38), we obtain the θ-equation (11.39e) , as before, and the new  \phi \text {-equation: }

m a \ddot{\phi} \sin \theta  +  2 m a \dot{\phi} \dot{\theta} \cos \theta=R \text {. }                  (11.39j)

If  R(\dot{\theta}, \dot{\phi}, \theta, \phi, t)  is some specified function, (11.39j) is a nonlinear differential equation for   \phi(t)  coupled with (11.39e) in which  \omega=\dot{\phi}(t).  On the other hand, for a specified function  \phi(t),  and with   \theta(t)  determined by (11.39e) , (11.39j) is an equation that determines R(t). In particular, for  \dot{\phi}=\omega,  a constant, (11.39j) gives  R=2 m a \omega \dot{\theta} \cos \theta,  which is the same nonconservative, rheonomic  constraint force obtained in (11.39g) . The original Lagrange method eliminates the need to determine the inconsequential working rheonomic constraint force, which may be found by other methods, if needed.

Related Answered Questions

Question: 11.4

Verified Answer:

The kinetic energy of P is   T=\frac{1}{2} ...
Question: 11.1

Verified Answer:

The three independent generalized coordinates and ...