Question 17.3: GRADED Consider the voltaic cell in which the reaction is 2A...

GRADED

Consider the voltaic cell in which the reaction is

2Ag^{+}(aq)  +  Cd(s)  →  2Ag(s)  +  Cd^{2+}(aq)

ⓐ Use Table 17.1 to calculate E° for the voltaic cell.

Table 17.1 Standard Potentials in Water Solution at 25°C

Lithium is the strongest reducing agent.

 

 

 

 

 

 

 

O = strongest oxidizing agent;
R = strongest reducing agent.

 

 

 

 

 

Fluorine is the strongest oxidizing agent.

 

Lithium and fluorine are very dangerous materials to work with.

 

AcidicSolution,[H^{+}] = 1 M
E°_{red}(V)
-3.040
-2.936
-2.906
-2.869
-2.714
-2.357
-1.680
-1.182
-0.762
-0.744
-0.409
-0.408
-0.402
-0.356
-0.336
-0.282
-0.236
-0.152
-0.141
-0.127
0.000
0.073
0.144
0.154
0.155
0.161
0.339
0.518
0.534
0.769
0.796
0.799
0.908
0.964
1.001
1.077
1.229
1.229
1.330
1.360
1.458
1.498
1.512
1.687
1.763
1.953
2.889
→Li(s)
→ K(s)
→ Ba(s)
→ Ca(s)
→Na(s)
→ Mg(s)
→ Al(s)
→ Mn(s)
→ Zn(s)
→ Cr(s)
→ Fe(s)
Cr^{2+}(aq)
→ Cd(s)
→ Pb(s) + SO_{4}^{2-}(aq)
→ Tl(s)
→ Co(s)
→Ni(s)
→ Ag(s) + I^{-}(aq)
→ Sn(s)
→ Pb(s)
H_{2}(g)
→ Ag(s) + Br^{-}(aq)
H_{2}S(aq)
Sn^{2+}(aq)
SO_{2}(g)  +  2H_{2}O
Cu^{+}(aq)
→ Cu(s)
→ Cu(s)
2I^{-}(aq)
Fe^{2+}(aq)
→ 2Hg(l)
→ Ag(s)
Hg_{2}^{2+}(aq)
→NO(g) + 2H_{2}O
Au(s)  +  4Cl^{-}(aq)
2Br^{-}(aq)
2H_{2}O
Mn^{2+}(aq)  +  2H_{2}O
2Cr^{3+}(aq)  +  7H_{2}O
2Cl^{-}(aq)
\frac{1}{2} Cl_{2}(g)  +  3H_{2}O
→ Au(s)
Mn^{2+}(aq)  +  4H_{2}O
PbSO_{4}(s)  +  2H_{2}O
2H_{2}O
Co^{2+}(aq)
→ 2F^{-}(aq)
Li^{+}(aq)  +  e^{-}
K^{+}(aq)  +  e^{-}
Ba^{2+}(aq)  +  2e^{-}
Ca^{2+}(aq)  +  2e^{-}
Na^{+}(aq) +  e^{-}
Mg^{2+}(aq)  +  2e^{-}
Al^{3+}(aq)  +  3e^{-}
Mn^{2+}(aq)  +  2e^{-}
Zn^{2+}(aq)  +  2e^{-}
Cr^{3+}(aq)  +  3e^{-}
Fe^{2+}(aq)  +  2e^{-}
Cr^{3+}(aq)  +  e^{-}
Cd^{2+}(aq)  +  2e^{-}
PbSO_{4}(s)  +  2e^{-}
Tl^{+}(aq)  +  e^{-}
Co^{2+}(aq)  +  2e^{-}
Ni^{2+}(aq)  +  2e^{-}
AgI(s)  +  e^{-}
Sn^{2+}(aq)  +  2e^{-}
Pb^{2+}(aq)  +  2e^{-}
2H^{+}(aq)  +  2e^{-}
AgBr(s)  +  e^{-}
S(s)  +  2H^{+}(aq)  +  2e^{-}
Sn^{4+}(aq)  +  2e^{-}
SO_{4}^{2-}(aq)  +  4H^{+}(aq) +  2e^{-}
Cu^{2+}(aq)  +  e^{-}
Cu^{2+}(aq)  +  2e^{-}
Cu^{+}(aq)  +  e^{-}
I_{2}(s)  +  2e^{-}
Fe^{3+}(aq)  +  e^{-}
Hg_{2}^{2+}(aq)  +  2e^{-}
Ag^{+}(aq)  +  e^{-}
2Hg^{2+}(aq)  +  2e^{-}
NO_{3}^{-}(aq)  +  4H^{+}(aq) +  3e^{-}
AuCl_{4}^{-}(aq)  +  3e^{-}
Br_{2}(l)  +  2e^{-}
O_{2}(g)  +  4H^{+}(aq)  +  4e^{-}
MnO_{2}(s)  +  4H^{+}(aq)  +  2e^{-}
Cr_{2}O_{7}^{2-}(aq)  +  14H^{+}(aq)  +  6e^{-}
Cl_{2}(g)  +  2e^{-}
ClO_{3}^{-}(aq)  +  6H^{+}(aq)  +  5e^{-}
Au^{3+}(aq)  +  3e^{-}
MnO_{4}^{-}(aq)  +  8H^{+}(aq) +  5e^{-}
PbO_{2}(s)  +  SO_{4}^{2-}(aq)  +  4H^{+}(aq)  +  2e^{-}
H_{2}O_{2}(aq)  +  2H^{+}(aq)  +  2e^{-}
Co^{3+}(aq)  +  e^{-}
F_{2}(g)  +  2e^{-}
Basic Solution, [OH^{-}]= 1 M
E°_{red}(V)
-0.891
-0.828
-0.547
-0.445
-0.140
0.004
0.398
0.401
0.614
0.890
→ Fe(s) + 2 OH^{-}(aq)
H_{2}(g) + 2 OH^{-}(aq)
Fe(OH)_{2}(s) + OH^{-}(aq)
S^{2-}(aq)
→NO(g) + 4 OH^{-}(aq)
NO_{2}^{-}(aq) + 2 OH^{-}(aq)
ClO_{3}^{-}(aq) + 2 OH^{-}(aq)
→ 4 OH^{-}(aq)
Cl^{-}(aq) + 6 OH^{-}(aq)
Cl^{-}(aq) + 2 OH^{-}(aq)
Fe(OH)_{2}(s)  +  2e^{-}
2H_{2}O  +  2e^{-}
Fe(OH)_{3}(s)  +  e^{-}
S(s)  +  2e^{-}
NO_{3}^{-}(aq)  +  2H_{2}O  +  3e^{-}
NO_{3}^{-}(aq)  +  H_{2}O +  2e^{-}
ClO_{4}^{-}(aq)  +  H_{2}O  +  2e^{-}
O_{2}(g)  +  2H_{2}O  +  4e^{-}
ClO_{3}^{-}(aq)  +  3H_{2}O  +  6e^{-}
ClO^{-}(aq)  +  H_{2}O  +  2e^{-}

ⓑ If the value zero is arbitrarily assigned to the standard voltage for the reduction of Ag^{+} ions to Ag, what is E°_{red} for the reduction of Cd^{2+} ions to Cd?

STRATEGY

1. Assign oxidation numbers to each element so you can decide which element is reduced and which one is oxidized.
2. Write the oxidation and reduction half-reactions together with the corresponding E°_{ox}  and E°_{red}. Recall that E°_{ox} = -(E°_{red}).
3. Add both half-reactions (make sure you cancel electrons) and take the sum of E°_{ox} and E°_{red} to obtain E° for the cell.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Ag: 11 → 0 (reduction)

Cd: 0 → +2 (oxidation)

1. Oxidation numbers
2Ag^{+}(aq)  +  2e^{-} → 2Ag(s)            E°_{red} = +0.799 V

Cd(s) → Cd^{2+}(aq)  +  2e^{-}           E°_{ox} = -(E°_{red}) = – (-0.402 V) = +0.402 V

2. Half-reactions
Cd(s) + 2Ag^{+}(aq)Cd^{2+}(aq) + 2Ag(s)      E° = 0.799 V + 0.402 V = 1.201 V 3.

E° for the cell does not change. It does not matter what you choose to be E°_{red} of the half-reaction. Naturally,  E°_{ox} will also change and you cannot choose to change that.

If you choose E°_{red} to be zero, then

E°_{red} + E°_{ox} = 1.201 V

0 + E°_{ox} = 1.201 V; E°_{ox} for the half-reaction Cd(s) → Cd^{2+}(aq)  +  2e^{-}  =  1.201 V

Since E°_{red} for Cd^{2+} is asked for, then E°_{red} = -(E°_{ox}) = -1.201 V

Related Answered Questions

Question: 17.5

Verified Answer:

ⓐ N: +5 → +2 reduction Ag: 0 → +1 oxidation 1....