Question 15.SP.15: Crank AB of the engine system of Sample Prob. 15.7 has a con...
Crank AB of the engine system of Sample Prob. 15.7 has a constant clockwise angular velocity of 2000 rpm. For the crank position shown, determine the angular acceleration of the connecting rod BD and the acceleration of point D.
STRATEGY: The linkage consists of two rigid bodies: crank AB is rotating about a fixed axis and connecting rod BD is undergoing general plane motion. Therefore, you need to use rigid-body kinematics.

Learn more on how we answer questions.
MODELING and ANALYSIS:
Motion of Crank AB. Since the crank rotates about A with constant \omega_{A B} = 2000 rpm = 209.4 rad/s, you have \alpha_{A B} = 0. The acceleration of B is therefore directed toward A (Fig. 1) and has the magnitude of
\begin{aligned}&a_B=r \omega_{A B}^2=\left(\frac{3}{12} \mathrm{ft}\right)(209.4 \mathrm{rad} / \mathrm{s})^2=10,962 \mathrm{ft} / \mathrm{s}^2 \\&\mathbf{a}_B=10,962 \mathrm{ft} / \mathrm{s}^2 \text{⦫} 40^{\circ}\end{aligned}
Motion of Connecting Rod BD. The angular velocity \omega_{B D} and the value of β were obtained in Sample Prob. 15.7 using relative velocity equations:
\boldsymbol{\omega}_{B D}=62.0 \mathrm{rad} / \mathrm{s} \circlearrowleft \quad \beta=13.95^{\circ}
Resolve the motion of BD into a translation with B and a rotation about B (Fig. 2). Resolve the relative acceleration \alpha_{D / B} into normal and tangential components:
\begin{aligned}\left(a_{D / B}\right)_n=(B D) \omega_{B D}^2=\left(\frac{8}{12} \mathrm{ft}\right)(62.0 \mathrm{rad} / \mathrm{s})^2 &=2563 \mathrm{ft} / \mathrm{s}^2 \\\left(\mathrm{a}_{D / B}\right)_n &=2563 \mathrm{ft} / \mathrm{s}^2 \text{⦩} 13.95^{\circ} \\\left(a_{D / B}\right)_t=(B D) \alpha_{B D} &=\left(\frac{8}{12}\right) \alpha_{B D}=0.6667 \alpha_{B D} \\\left(\mathrm{a}_{D / B}\right)_t &=0.6667 \alpha_{B D} \text{⦨} 76.05^{\circ}\end{aligned}
Although \left(\mathbf{a}_{D / B}\right)_t must be perpendicular to BD, its sense is not known.
Noting that the acceleration a_D must be horizontal, you have
\begin{aligned}\mathbf{a}_D &=\mathbf{a}_B+\mathbf{a}_{D / B}=\mathbf{a}_B+\left(\mathbf{a}_{D / B}\right)_n+\left(\mathbf{a}_{D / B}\right)_t \\{\left[a_D \leftrightarrow\right] } &=\left[10,962 ⦫ 40^{\circ}\right]+\left[2563 ⦩ 13.95^{\circ}\right]+\left[0.6667 \alpha_{B D} \text{ ⦨ } 76.05^{\circ}\right]\end{aligned} (1)
Equating x and y components, you obtain the following scalar equations, as
\stackrel{+}{\rightarrow} x \text { components: }-a_D=-10,962 \cos 40^{\circ}-2563 \cos 13.95^{\circ}+0.6667 \alpha_{B D} \sin 13.95^{\circ}
+\uparrow y \text { components: }0=-10,962 \sin 40^{\circ}+2563 \sin 13.95^{\circ}+0.6667 \alpha_{B D} \cos 13.95^{\circ}
Solving the equations simultaneously gives \alpha_{B D}=+9940 \mathrm{rad} / \mathrm{s}^2 and a_D=+9290 \mathrm{ft} / \mathrm{s}^2. The positive signs indicate that the senses shown on the vector polygon (Fig. 3) are correct.
\begin{aligned}\alpha_{B D} &=9940 \mathrm{rad} / \mathrm{s}^2 \circlearrowleft \\\mathbf{a}_D &=9290 \mathrm{ft} / \mathrm{s}^2 \leftarrow\end{aligned}
REFLECT and THINK: In this solution, you looked at the magnitude and direction of each term in Eq. (1) and then found the x and y components. Alternatively, you could have assumed that a_D was to the left, \alpha_{B D} was positive, and then substituted in the vector quantities to get
\begin{aligned}\mathbf{a}_D=& \mathbf{a}_B + \alpha \mathbf{k} \times \mathbf{r}_{D / B}-\omega^2 \mathbf{r}_{D / B} \\-a_D \mathbf{i}=&-a_B \cos 40^{\circ} \mathbf{i} – a_B \sin 40^{\circ} \mathbf{j} + \alpha_{B D} \mathbf{k} \times(l \cos \beta \mathbf{i} – l \sin \beta \mathbf{j}) \\& \quad-\omega_{B D}^2(l \cos \beta \mathbf{i}-l \sin \beta \mathbf{j}) \\=&-a_B \cos 40^{\circ} \mathbf{i} – a_B \sin 40^{\circ} \mathbf{j} + \alpha_{B D} l \cos \beta \mathbf{j} + \alpha_{B D} l \sin \beta \mathbf{i} \\&-\omega_{B D}^2 l \cos \beta \mathbf{i} + \omega_{B D}^2 l \sin \beta \mathbf{j}\end{aligned}
Equating components gives
\begin{aligned}&\text { i: }-a_D=-a_B \cos 40^{\circ} + \alpha_{B D} l \sin \beta – \omega_{B D}^2 l \cos \beta \\&\mathbf{j}: \quad 0=-a_B \sin 40^{\circ} + \alpha_{B D} l \cos \beta + \omega_{B D}^2 l \sin \beta \\&\end{aligned}These are identical to the previous equations if you substitute in the numbers.

