Question 15.SP.15: Crank AB of the engine system of Sample Prob. 15.7 has a con...

Crank AB of the engine system of Sample Prob. 15.7 has a constant clockwise angular velocity of 2000 rpm. For the crank position shown, determine the angular acceleration of the connecting rod BD and the acceleration of point D.

STRATEGY: The linkage consists of two rigid bodies: crank AB is rotating about a fixed axis and connecting rod BD is undergoing general plane motion. Therefore, you need to use rigid-body kinematics.

Screenshot 2022-11-18 213132
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

MODELING and ANALYSIS:
Motion of Crank AB. Since the crank rotates about A with constant  \omega_{A B} = 2000 rpm = 209.4 rad/s, you have  \alpha_{A B} = 0. The acceleration of B is therefore directed toward A (Fig. 1) and has the magnitude of

\begin{aligned}&a_B=r \omega_{A B}^2=\left(\frac{3}{12}  \mathrm{ft}\right)(209.4  \mathrm{rad} / \mathrm{s})^2=10,962  \mathrm{ft} / \mathrm{s}^2 \\&\mathbf{a}_B=10,962  \mathrm{ft} / \mathrm{s}^2 \text{⦫} 40^{\circ}\end{aligned}

Motion of Connecting Rod BD. The angular velocity  \omega_{B D}  and the value of β were obtained in Sample Prob. 15.7 using relative velocity equations:

\boldsymbol{\omega}_{B D}=62.0  \mathrm{rad} / \mathrm{s} \circlearrowleft               \quad \beta=13.95^{\circ}

Resolve the motion of BD into a translation with B and a rotation about B (Fig. 2). Resolve the relative acceleration  \alpha_{D / B}  into normal and tangential components:

\begin{aligned}\left(a_{D / B}\right)_n=(B D) \omega_{B D}^2=\left(\frac{8}{12}  \mathrm{ft}\right)(62.0  \mathrm{rad} / \mathrm{s})^2 &=2563  \mathrm{ft} / \mathrm{s}^2 \\\left(\mathrm{a}_{D / B}\right)_n &=2563  \mathrm{ft} / \mathrm{s}^2 \text{⦩} 13.95^{\circ} \\\left(a_{D / B}\right)_t=(B D) \alpha_{B D} &=\left(\frac{8}{12}\right) \alpha_{B D}=0.6667 \alpha_{B D} \\\left(\mathrm{a}_{D / B}\right)_t &=0.6667 \alpha_{B D} \text{⦨} 76.05^{\circ}\end{aligned}

Although  \left(\mathbf{a}_{D / B}\right)_t  must be perpendicular to BD, its sense is not known.

Noting that the acceleration  a_D  must be horizontal, you have

\begin{aligned}\mathbf{a}_D &=\mathbf{a}_B+\mathbf{a}_{D / B}=\mathbf{a}_B+\left(\mathbf{a}_{D / B}\right)_n+\left(\mathbf{a}_{D / B}\right)_t \\{\left[a_D \leftrightarrow\right] } &=\left[10,962 ⦫  40^{\circ}\right]+\left[2563  ⦩  13.95^{\circ}\right]+\left[0.6667 \alpha_{B D} \text{ ⦨ } 76.05^{\circ}\right]\end{aligned}              (1)

Equating x and y components, you obtain the following scalar equations, as

\stackrel{+}{\rightarrow} x \text { components: }

-a_D=-10,962 \cos 40^{\circ}-2563 \cos 13.95^{\circ}+0.6667 \alpha_{B D} \sin 13.95^{\circ}

+\uparrow y \text { components: }

0=-10,962 \sin 40^{\circ}+2563 \sin 13.95^{\circ}+0.6667 \alpha_{B D} \cos 13.95^{\circ}

Solving the equations simultaneously gives  \alpha_{B D}=+9940  \mathrm{rad} / \mathrm{s}^2  and  a_D=+9290  \mathrm{ft} / \mathrm{s}^2.  The positive signs indicate that the senses shown on the vector polygon (Fig. 3) are correct.

\begin{aligned}\alpha_{B D} &=9940  \mathrm{rad} / \mathrm{s}^2 \circlearrowleft \\\mathbf{a}_D &=9290  \mathrm{ft} / \mathrm{s}^2 \leftarrow\end{aligned}

REFLECT and THINK: In this solution, you looked at the magnitude and direction of each term in Eq. (1) and then found the x and y components. Alternatively, you could have assumed that  a_D  was to the left,  \alpha_{B D}  was positive, and then substituted in the vector quantities to get

\begin{aligned}\mathbf{a}_D=& \mathbf{a}_B  +  \alpha \mathbf{k} \times \mathbf{r}_{D / B}-\omega^2 \mathbf{r}_{D / B} \\-a_D \mathbf{i}=&-a_B \cos 40^{\circ} \mathbf{i}  –  a_B \sin 40^{\circ} \mathbf{j}  +  \alpha_{B D} \mathbf{k} \times(l \cos \beta \mathbf{i}  –  l \sin \beta \mathbf{j}) \\& \quad-\omega_{B D}^2(l \cos \beta \mathbf{i}-l \sin \beta \mathbf{j}) \\=&-a_B \cos 40^{\circ} \mathbf{i}  –  a_B \sin 40^{\circ} \mathbf{j}  +  \alpha_{B D} l \cos \beta \mathbf{j}  +  \alpha_{B D} l \sin \beta \mathbf{i} \\&-\omega_{B D}^2 l \cos \beta \mathbf{i}  +  \omega_{B D}^2 l \sin \beta \mathbf{j}\end{aligned}

Equating components gives

\begin{aligned}&\text { i: }-a_D=-a_B \cos 40^{\circ}  +  \alpha_{B D} l \sin \beta  –  \omega_{B D}^2 l \cos \beta \\&\mathbf{j}: \quad 0=-a_B \sin 40^{\circ}  +  \alpha_{B D} l \cos \beta  +  \omega_{B D}^2 l \sin \beta \\&\end{aligned}

These are identical to the previous equations if you substitute in the numbers.

Screenshot 2022-11-18 213240
Screenshot 2022-11-18 213340

Related Answered Questions