Question A2.17: For the beam shown in Fig. 15, draw SFD and BMD.

For the beam shown in Fig. 15, draw SFD and BMD.        [KU, Dec. 2009]

a.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The loading diagram is shown in fig. 16 (a).

R_B+R_C=4+4+4 \times 6=32 \mathrm{\ kN}

Taking moments about C, we have

\begin{aligned}6 R_B &=4 \times 8-4 \times 2+4 \times 6 \times 3=96 \\R_B &=16 \mathrm{\ kN} \\R_C &=32-16=16 \mathrm{\ kN}\end{aligned}

S.F.D.

Span AB :

F_A=F_B=-4 \mathrm{\ kN}

Span BC:
Let x = distance from B.

\begin{aligned}&F_x=-4+R_B-4 x=-4+16-4 x=12-4 x \\&F_B=12-0=12 \mathrm{\ kN} \\&F_C=12-4 \times 6=-12 \mathrm{\ kN}\end{aligned}

Span CD:

\begin{aligned}&F_D=4 \mathrm{\ kN} \\&F_C=4-16=-12 \mathrm{\ kN}\end{aligned}

The S.F.D. is shown in Fig. 16 (b).

B.M.D.

Span AB :

M_A=0, M_B=-4 \times 2=-8 \mathrm{\ kN} \cdot \mathrm{m}

Span BC:

M_x=-4(2+x)+16 \times 6-2 \times 6^2=-32+96-72=-8 \mathrm{\ kN} \cdot \mathrm{m}

At x = 3 m from B

M = –4 × 5 + 4 8 – 18 = 10 kN.m

For  \quad M_x=0,2 x^2-12 x+8=0 \text { or } x^2-6 x+4=0

x=\frac{1}{2}(6 \pm \sqrt{36-16})=\frac{1}{2}(6 \pm 4.47)=0.764 \mathrm{~m} \text { and } 5.236 \mathrm{~m}

Span CD:

M_D=0, M_C=-4 \times 2=-8 \mathrm{\ kN} . \mathrm{m}

The B.M.D. is shown in Fig. 16 (c).

16

Related Answered Questions

Question: A2.19

Verified Answer:

The loaded beam is shown in Fig. 20 (a) R_A...
Question: A2.18

Verified Answer:

The loading diagram is shown in Fig. 18 (a). [late...
Question: A2.12

Verified Answer:

The loading diagram is shown in Fig. 12 (a). S.F.D...