Question 31.5: The ammonia–air feed stream described in example 3 is fed co...

The ammonia–air feed stream described in example 3 is fed cocurrently with an ammonia–free water stream. The ammonia concentration is to be reduced from 3.52 to 1.29 % by volume, using a water stream 1.37 times the minimum. Determine (a) the minimum Ls/GsL_s / G_s ratio, (b) the actual water rate, and (c) the concentration in the exiting aqueous stream.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In example 3, the following compositions were evaluated:

 entering YNH3,1=0.0365\text { entering } \quad Y_{\mathrm{NH}_3, 1}=0.0365

 

 exiting YNH3,2=0.0131\text { exiting } \quad Y_{\mathrm{NH}_3, 2}=0.0131

 

 entering XNH3,1=0.0\text { entering } \quad X_{\mathrm{NH}_3, 1}=0.0

The moles of G on a solute-free basis were evaluated to be 0.483Amolm2s\frac{0.483}{A} \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}. In Figure 31.17, the minimum and actual operating lines are shown. For these operating lines

(LsGs)min=YNH3,1YNH3,2XNH3,2XNH3,2=0.03650.01310.010\left(\frac{L_s}{G_s}\right)_{\min }=\frac{Y_{\mathrm{NH}_3, 1}-Y_{\mathrm{NH}_3, 2}}{X_{\mathrm{NH}_3, 2}-X_{\mathrm{NH}_3, 2}}=\frac{0.0365-0.0131}{0.01-0}

 

=2.34 moles NH3-free L phase  moles NH3-free G phase =2.34 \frac{\text { moles } \mathrm{NH}_3 \text {-free } L \text { phase }}{\text { moles } \mathrm{NH}_3 \text {-free } G \text { phase }}

and

(LSGS)actual =1.37(LSGS)min=1.37(2.34)=3.21 moles NH3-free L phase  moles NH3-free G phase \left(\frac{L_S}{G_S}\right)_{\text {actual }}=1.37\left(\frac{L_S}{G_S}\right)_{\min }=1.37(2.34)=3.21 \frac{\text { moles } \mathrm{NH}_3 \text {-free } L \text { phase }}{\text { moles } \mathrm{NH}_3 \text {-free } G \text { phase }}

The composition of the exiting stream can be evaluated with the slope of the actual operating line by

(LSGS)actual =3.21=YNH3,1YNH3,2XNH3,2XNH3,1=0.03650.0131XNH3,20\left(\frac{L_S}{G_S}\right)_{\text {actual }}=3.21=\frac{Y_{\mathrm{NH}_3, 1}-Y_{\mathrm{NH}_3, 2}}{X_{\mathrm{NH}_3, 2}-X_{\mathrm{NH}_3, 1}}=\frac{0.0365-0.0131}{X_{\mathrm{NH}_3, 2}-0}

or

XNH3,2=0.02343.21=0.0073=mol NH3 mol NH3-free water X_{\mathrm{NH}_3, 2}=\frac{0.0234}{3.21}=0.0073=\frac{\mathrm{mol}  \mathrm{NH}_3}{\mathrm{~mol}  \mathrm{NH}_3 \text {-free water }}

The moles of NH3\mathrm{NH}_3-free water fed to the tower, LsL_s, is also evaluated using the value of

(LSGS)actual =3.21mol NH3 free L phase mol NH3 free G phase \left(\frac{L_S}{G_S}\right)_{\text {actual }}=3.21 \frac{\mathrm{mol}  \mathrm{NH}_3 \text { free } L \text { phase }}{\mathrm{mol}  \mathrm{NH}_3 \text { free } G \text { phase }}

Then

LS=3.21GS=3.21(0.481A)=1.55 Amolm2sL_S=3.21 G_S=3.21\left(\frac{0.481}{A}\right)=\frac{1.55}{\mathrm{~A}} \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}
f31.17

Related Answered Questions