Question 18.2: Determine the collision frequency and mean free path for neo...

Determine the collision frequency and mean free path for neon at 273 K and 0.113 MPa. The molecular mass of neon is 20.183 kg/kgmole.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For neon,

m = \frac{M}{N_o} = \frac{20.183  \text{kg/kgmole}}{6.022 × 10^{26}  \text{molecules/kgmole}} = 3.35 × 10^{−26}  \text{kg/molecule}

Then, the root mean square velocity of the neon molecules is given by Eq. (18.13) as

V_\text{rms} =\sqrt{3RT} = \sqrt{\frac{3kT}{m}}              (18.13)

V_\text{rms} = (\frac{3kT}{m})^{1/2} = [\frac{3[1.38 × 10^{−23}  \text{J/(molecule.K)}] (273  \text{K})}{3.35 × 10^{−26}  \text{kg/molecule}}]^{1/2} = 581  \text{m/s}

From Table 18.1, we find that the radius of the neon molecule is 1.30 × 10^{−10}  \text{m},

Table 18.1  Typical Values of the Effective Molecular Radius
Molecule Effective Radius, r (m)
\text{He} 1.37 × 10^{−10}
\text{Ne} 1.30 × 10^{−10}
\text{Ar} 1.82 × 10^{−10}
\text{H}_2 0.74 × 10^{−10}
\text{N}_2 1.10 × 10^{−10}
\text{O}_2 1.21 × 10^{−10}
\text{Br}_2 2.28 × 10^{−10}
\text{Cl}_2 1.99 × 10^{−10}
\text{F}_2 1.41 × 10^{−10}
\text{I}_2 2.67 × 10^{−10}
\text{HBr} 1.41 × 10^{−10}
\text{HCl} 1.27 × 10^{−10}
\text{HF} 0.92 × 10^{−10}
\text{HI} 1.60 × 10^{−10}
\text{H}_2\text{O} 1.50 × 10^{−10}
\text{CO} 1.13 × 10^{−10}
\text{NO} 1.15 × 10^{−10}
\text{CO}_2 2.30 × 10^{−10}
\text{NH}_3 2.22 × 10^{−10}
\text{CH}_4 2.07 × 10^{−10}
Source: Material drawn from the JANAF Thermochemical Tables, first ed., 1961, Thermal Research Laboratory, Dow Chemical Corporation, Midland,  I. Reprinted by permission.

so the collision cross-section is

σ = 4πr^2 = 4π(1.30 × 10^{−10} \text{m})^2 = 2.12 × 10^{−19}  \text{m}^2

and the collision frequency is

\mathcal{F} = σV_\text{rms} \frac{N}{\sout{V}} (\frac{8}{3π})^{1/2}

where

\frac{N}{\sout{V}} = \frac{p}{kT} = \frac{0.113 × 10^6  \text{N/m}^2}{[1.380 × 10^{−23}  \text{N.m/(molecule.K)}] (273  \text{K})} = 3.00 × 10^{25}  \text{molecules/m}^3

then

\mathcal{F} = σV_\text{avg} \frac{N}{V} (\frac{8}{3π})^{1/2} = (3.00 × 10^{25}  \text{molecules/m}^3) (\frac{8}{3π})^{1/2} (2.12 × 10^{−19} \text{m}^2) (581  \text{m/s})

= 3.40 × 10^9  \text{collisions/s}

so that the molecular mean free path is given by Eq. (18.15) as

λ = \frac{1}{(N/\sout{V})σ} = \frac{1}{(3.00 × 10^{25}  \text{molecules/m}^3) (2.12 × 10^{−19} \text{m}^2)} = 1.57 × 10^{−7} m

Related Answered Questions