Question 1.19: Suppose z1 = r1(cos θ1 + isin θ1 ) and z2 = r2(cos θ2 + isin...
Suppose z_1=r_1\left(\cos \theta_1+i \sin \theta_1\right) \text { and } z_2=r_2\left(\cos \theta_2+i \sin \theta_2\right) . Prove:
(a) z_1 z_2=r_1 r_2\left\{\cos \left(\theta_1+\theta_2\right)+i \sin \left(\theta_1+\theta_2\right)\right\} (b) \frac{z_1}{z_2}=\frac{r_1}{r_2}\left\{\cos \left(\theta_1-\theta_2\right)+i \sin \left(\theta_1-\theta_2\right)\right\}.
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
\begin{aligned} (a) z_1 z_2 &=\left\{r_1\left(\cos \theta_1+i \sin \theta_1\right)\right\}\left\{r_2\left(\cos \theta_2+i \sin \theta_2\right)\right\} \\ &=r_1 r_2\left\{\left(\cos \theta_1 \cos \theta_2-\sin \theta_1 \sin \theta_2\right)+i\left(\sin \theta_1 \cos \theta_2+\cos \theta_1 \sin \theta_2\right)\right\} \\ &=r_1 r_2\left\{\cos \left(\theta_1+\theta_2\right)+i \sin \left(\theta_1+\theta_2\right)\right\} \end{aligned}
\begin{aligned} (b) \frac{z_1}{z_2} &=\frac{r_1\left(\cos \theta_1+i \sin \theta_1\right)}{r_2\left(\cos \theta_2+i \sin \theta_2\right)} \cdot \frac{\left(\cos \theta_2-i \sin \theta_2\right)}{\left(\cos \theta_2-i \sin \theta_2\right)} \\ &=\frac{r_1}{r_2}\left\{\frac{\left(\cos \theta_1 \cos \theta_2+\sin \theta_1 \sin \theta_2\right)+i\left(\sin \theta_1 \cos \theta_2-\cos \theta_1 \sin \theta_2\right)}{\cos ^2 \theta_2+\sin ^2 \theta_2}\right\} \\ &=\frac{r_1}{r_2}\left\{\cos \left(\theta_1-\theta_2\right)+i \sin \left(\theta_1-\theta_2\right)\right\} \end{aligned}
In terms of Euler’s formula, e^{i \theta}=\cos \theta+i \sin \theta, the results state that if z_1=r_1 e^{i \theta_1} and z_2=r_2 e^{i \theta_2}, then z_1 z_2=r_1 r_2 e^{i\left(\theta_1+\theta_2\right)} and z_1 / z_2=r_1 e^{i \theta_1} / r_2 e^{i \theta_2}=\left(r_1 / r_2\right) e^{i\left(\theta_1-\theta_2\right)}.
Related Answered Questions
Question: 1.21
Verified Answer:
We use the binomial formula
(a+b)^n=a^n+\l...
Question: 1.20
Verified Answer:
We use the principle of mathematical induction. As...
Question: 1.17
Verified Answer:
(a) 6\left(\cos 240^{\circ}+i \sin 240^{\ci...
Question: 1.23
Verified Answer:
\begin{aligned}(a) \sin ^3 \theta &=\...
Question: 1.24
Verified Answer:
Let z=r e^{i \theta} be represent...
Question: 1.26
Verified Answer:
\begin{aligned} (a) {\left[3\left(\cos 40...
Question: 1.27
Verified Answer:
Let z_1=r_1\left(\cos \theta_1+i \sin \the...
Question: 1.29
Verified Answer:
(a) (-1+i)^{1 / 3}
\begin...
Question: 1.18
Verified Answer:
(a) Analytically. Let O be the starting point (see...
Question: 1.13
Verified Answer:
(a) The center can be represented by the complex n...