Question 18.9: To test the diatomic Maxwell-Boltzmann gas equations just de...
To test the diatomic Maxwell-Boltzmann gas equations just developed, compute the value of c_v/R for nitrous oxide (\text{NO}) at 20.0°\text{C} and compare it with the measured result given in Table 18.3.
Learn more on how we answer questions.
Table 18.3 Measured Values of the Specific Heats of Various Gases at 20.0ºC | |||
Gas | c_v/R | c_p/R | k= c_p/c_v |
Monatomic | |||
\text{He} | 1.5 | 2.5 | 1.67 |
\text{Ne} | 1.5 | 2.5 | 1.67 |
\text{Ar} | 1.51 | 2.52 | 1.67 |
\text{Kr} | 1 | 1.68 | 1.68 |
\text{Xe} | 1.52 | 2.51 | 1.65 |
Diatomic | |||
\text{CO} | 2.51 | 3.51 | 1.4 |
\text{NO} | 2.51 | 3.51 | 1.4 |
\text{H}_2 | 2.44 | 3.42 | 1.4 |
\text{O}_2 | 2.53 | 3.53 | 1.4 |
\text{N}_2 | 2.5 | 3.5 | 1.4 |
Triatomic | |||
\text{CO}_2 | 3.48 | 4.48 | 1.29 |
\text{SO}_2 | 3.97 | 4.97 | 1.25 |
\text{H}_2\text{O} | 3.05 | 4.05 | 1.33 |
For a diatomic Maxwell-Boltzmann gas, the constant volume specific heat is given by Eq. (18.52d) as
c_v = \frac{5}{2} R + \frac{R(Θ_v/T)^2 \text{exp} (Θ_v /T)}{[\text{exp} (Θ_v /T) -1]^2}
then,
\frac{c_v}{R} = \frac{5}{2} + \frac{(Θ_v/T)^2 \text{exp} (Θ_v /T)}{[\text{exp} (Θ_v /T) -1]^2}
From Table 18.8, we find that Θ_v = 2740 \text{K} for \text{NO}, so
Table 18.8 Characteristic Vibrational and Rotational emperatures of Some Common Diatomic Materials | ||
Material | Θ_v(\text{K}) | Θ_r (\text{K}) |
\text{H}_2 | 6140 | 85.5 |
\text{HF} | 5954 | 30.3 |
\text{OH} | 5360 | 27.5 |
\text{HCl} | 4300 | 15.3 |
\text{CH} | 4100 | 20.7 |
\text{N}_2 | 3340 | 2.86 |
\text{HBr} | 3700 | 12.1 |
\text{HI} | 3200 | 9.0 |
\text{Co} | 3120 | 2.77 |
\text{NO} | 2740 | 2.47 |
\text{O}_2 | 2260 | 2.09 |
\text{Cl}_2 | 810 | 0.35 |
\text{Br}_2 | 470 | 0.12 |
\text{I}_2 | 309 | 0.05 |
\text{Na}_2 | 230 | 0.22 |
\text{K}_2 | 140 | 0.08 |
Source: From Lee, John F., Sears, Francis W., Turcotte, Donald L. Statistical Thermodynamics, © 1963. Addison- Wesley Publishing Co., Inc, Reading, MA. Adapted from Table 10-1 on page 204. Reprinted with permission. |
(\frac{c_v}{R})_\text{NO} = \frac{5}{2} + \frac{(\frac{2740}{20.0 + 273.15})^2 \text{exp} (\frac{2740}{20.0 + 273.15})^2}{ [\text{exp} (\frac{2740}{20.0 + 273.15}) -1]} = 2.51
as in Table 18.3. Note that, since R_{\text{NO}} = Y/M_{\text{NO}} = 8.3143/30.01 = 0.2771 \text{kJ/kg.K}, then (c_v)_{\text{NO}} = 0.2771 × 2.51 = 0.695 \text{kJ/kg.K} at 20.0°\text{C}.