Question 18.9: To test the diatomic Maxwell-Boltzmann gas equations just de...

To test the diatomic Maxwell-Boltzmann gas equations just developed, compute the value of c_v/R for nitrous oxide (\text{NO}) at 20.0°\text{C} and compare it with the measured result given in Table 18.3.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Table 18.3  Measured Values of the Specific Heats of Various Gases at 20.0ºC
Gas c_v/R c_p/R k= c_p/c_v
Monatomic
\text{He} 1.5 2.5 1.67
\text{Ne} 1.5 2.5 1.67
\text{Ar} 1.51 2.52 1.67
\text{Kr} 1 1.68 1.68
\text{Xe} 1.52 2.51 1.65
Diatomic
\text{CO} 2.51 3.51 1.4
\text{NO} 2.51 3.51 1.4
\text{H}_2 2.44 3.42 1.4
\text{O}_2 2.53 3.53 1.4
\text{N}_2 2.5 3.5 1.4
Triatomic
\text{CO}_2 3.48 4.48 1.29
\text{SO}_2 3.97 4.97 1.25
\text{H}_2\text{O} 3.05 4.05 1.33

For a diatomic Maxwell-Boltzmann gas, the constant volume specific heat is given by Eq. (18.52d) as

c_v = \frac{5}{2} R + \frac{R(Θ_v/T)^2  \text{exp} (Θ_v /T)}{[\text{exp} (Θ_v /T) -1]^2}

then,

\frac{c_v}{R} = \frac{5}{2} + \frac{(Θ_v/T)^2  \text{exp} (Θ_v /T)}{[\text{exp} (Θ_v /T) -1]^2}

From Table 18.8, we find that Θ_v = 2740  \text{K} for \text{NO}, so

Table 18.8  Characteristic Vibrational and Rotational  emperatures of Some Common Diatomic Materials
Material Θ_v(\text{K}) Θ_r (\text{K})
\text{H}_2 6140 85.5
\text{HF} 5954 30.3
\text{OH} 5360 27.5
\text{HCl} 4300 15.3
\text{CH} 4100 20.7
\text{N}_2 3340 2.86
\text{HBr} 3700 12.1
\text{HI} 3200 9.0
\text{Co} 3120 2.77
\text{NO} 2740 2.47
\text{O}_2 2260 2.09
\text{Cl}_2 810 0.35
\text{Br}_2 470 0.12
\text{I}_2 309 0.05
\text{Na}_2 230 0.22
\text{K}_2 140 0.08
Source: From Lee, John F., Sears, Francis W., Turcotte, Donald L. Statistical Thermodynamics, © 1963. Addison- Wesley Publishing Co., Inc, Reading, MA. Adapted from Table 10-1 on page 204. Reprinted with permission.

(\frac{c_v}{R})_\text{NO} = \frac{5}{2} + \frac{(\frac{2740}{20.0 + 273.15})^2  \text{exp} (\frac{2740}{20.0 + 273.15})^2}{ [\text{exp} (\frac{2740}{20.0 + 273.15}) -1]} = 2.51

as in Table 18.3. Note that, since R_{\text{NO}} = Y/M_{\text{NO}} = 8.3143/30.01 = 0.2771  \text{kJ/kg.K}, then (c_v)_{\text{NO}} = 0.2771 × 2.51 = 0.695  \text{kJ/kg.K} at 20.0°\text{C}.

Related Answered Questions