Question 1.29: Find each of the indicated roots and locate them graphically...
Find each of the indicated roots and locate them graphically.
(a) (-1+i)^{1 / 3} , (b) (-2 \sqrt{3}-2 i)^{1 / 4}
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
(a) (-1+i)^{1 / 3}
\begin{aligned} -1+i &=\sqrt{2}\{\cos (3 \pi / 4+2 k \pi)+i \sin (3 \pi / 4+2 k \pi)\} \\ (-1+i)^{1 / 3} &=2^{1 / 6}\left\{\cos \left(\frac{3 \pi / 4+2 k \pi}{3}\right)+i \sin \left(\frac{3 \pi / 4+2 k \pi}{3}\right)\right\} \end{aligned}
If k=0, z_1=2^{1 / 6}(\cos \pi / 4+i \sin \pi / 4).
If k=1, z_2=2^{1 / 6}(\cos 11 \pi / 12+i \sin 11 \pi / 12).
If k=2, z_3=2^{1 / 6}(\cos 19 \pi / 12+i \sin 19 \pi / 12).
These are represented graphically in Fig. 1-32.
(b) (-2 \sqrt{3}-2 i)^{1 / 4}
\begin{gathered} -2 \sqrt{3}-2 i=4\{\cos (7 \pi / 6+2 k \pi)+i \sin (7 \pi / 6+2 k \pi)\} \\ (-2 \sqrt{3}-2 i)^{1 / 4}=4^{1 / 4}\left\{\cos \left(\frac{7 \pi / 6+2 k \pi}{4}\right)+i \sin \left(\frac{7 \pi / 6+2 k \pi}{4}\right)\right\} \end{gathered}
If k=0, z_1=\sqrt{2}(\cos 7 \pi / 24+i \sin 7 \pi / 24).
If k=1, z_2=\sqrt{2}(\cos 19 \pi / 24+i \sin 19 \pi / 24).
If k=2, z_3=\sqrt{2}(\cos 31 \pi / 24+i \sin 31 \pi / 24).
If k=3, z_4=\sqrt{2}(\cos 43 \pi / 24+i \sin 43 \pi / 24)
These are represented graphically in Fig. 1-33.


Related Answered Questions
Question: 1.21
Verified Answer:
We use the binomial formula
(a+b)^n=a^n+\l...
Question: 1.20
Verified Answer:
We use the principle of mathematical induction. As...
Question: 1.19
Verified Answer:
\begin{aligned} (a) z_1 z_2 &=\left\{...
Question: 1.17
Verified Answer:
(a) 6\left(\cos 240^{\circ}+i \sin 240^{\ci...
Question: 1.23
Verified Answer:
\begin{aligned}(a) \sin ^3 \theta &=\...
Question: 1.24
Verified Answer:
Let z=r e^{i \theta} be represent...
Question: 1.26
Verified Answer:
\begin{aligned} (a) {\left[3\left(\cos 40...
Question: 1.27
Verified Answer:
Let z_1=r_1\left(\cos \theta_1+i \sin \the...
Question: 1.18
Verified Answer:
(a) Analytically. Let O be the starting point (see...
Question: 1.13
Verified Answer:
(a) The center can be represented by the complex n...