Question 1.52: Prove that for m = 2, 3, ... sin π/m sin 2π/m sin 3π/m ... s...

Prove that for m = 2, 3, …

\sin \frac{\pi}{m} \sin \frac{2 \pi}{m} \sin \frac{3 \pi}{m} \cdots \sin \frac{(m-1) \pi}{m}=\frac{m}{2^{m-1}}
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The roots of z^m=1 are z=1, e^{2 \pi i / m}, e^{4 \pi i / m}, \ldots, e^{2(m-1) \pi i / m}. Then, we can write

z^m-1=(z-1)\left(z-e^{2 \pi i / m}\right)\left(z-e^{4 \pi i / m}\right) \cdots\left(z-e^{2(m-1) \pi i / m}\right)

Dividing both sides by z-1 and then letting z=1 [realizing that \left(z^m-1\right) /(z-1)=1+z+z^2+\cdots+z^{m-1} ], we find

m=\left(1-e^{2 \pi i / m}\right)\left(1-e^{4 \pi i / m}\right) \cdots\left(1-e^{2(m-1) \pi i / m}\right)                (1)

Taking the complex conjugate of both sides of (1) yields

m=\left(1-e^{-2 \pi i / m}\right)\left(1-e^{-4 \pi i / m}\right) \cdots\left(1-e^{-2(m-1) \pi i / m}\right)                 (2)

Multiplying (1) by (2) using \left(1-e^{2 k \pi i / m}\right)\left(1-e^{-2 k \pi i / m}\right)=2-2 \cos (2 k \pi / m), we have

m^2=2^{m-1}\left(1-\cos \frac{2 \pi}{m}\right)\left(1-\cos \frac{4 \pi}{m}\right) \cdots\left(1-\cos \frac{2(m-1) \pi}{m}\right)                                    (3)

Since 1-\cos (2 k \pi / m)=2 \sin ^2(k \pi / m), (3) becomes

m^2=2^{2 m-2} \sin ^2 \frac{\pi}{m} \sin ^2 \frac{2 \pi}{m} \cdots \sin ^2 \frac{(m-1) \pi}{m}                        (4)

Then, taking the positive square root of both sides yields the required result.

Related Answered Questions

Question: 1.20

Verified Answer:

We use the principle of mathematical induction. As...
Question: 1.17

Verified Answer:

(a) 6\left(\cos 240^{\circ}+i \sin 240^{\ci...
Question: 1.24

Verified Answer:

Let z=r e^{i \theta} be represent...