Question 14.8: Acetic acid is esterified in the liquid phase with ethanol a...

Acetic acid is esterified in the liquid phase with ethanol at 100°C and atmospheric pressure to produce ethyl acetate and water according to the reaction:

CH3COOH(l)+C2H5OH(l)CH3COOC2H5(l)+H2O(l) \mathrm{CH}_3 \mathrm{COOH}(l)+\mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}(l) \rightarrow \mathrm{CH}_3 \mathrm{COOC}_2 \mathrm{H}_5(l)+\mathrm{H}_2 \mathrm{O}(l)

If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Data for ΔHf298 and ΔGf298 \Delta H_{f_{298}}^{\circ} \text { and } \Delta G_{f_{298}}^{\circ} are given for liquid acetic acid, ethanol, and water in Table C.4. For liquid ethyl acetate, the corresponding values are:

ΔHf298=480,000 J and ΔGf298=332,200 J<br/> \Delta H_{f_{298}^{\circ}}^{\circ}=-480,000 \mathrm{~J} \quad \text { and } \quad \Delta G_{f_{298}}^{\circ}=-332,200 \mathrm{~J}<br />

The values of ΔH298 and ΔG298 \Delta H_{298}^{\circ} \text { and } \Delta G_{298}^{\circ} for the reaction are therefore:

ΔH298=480,000285,830+484,500+277,690=3640 J \Delta H_{298}^{\circ}=-480,000-285,830+484,500+277,690=-3640 \mathrm{~J}

ΔG298=332,200237,130+389,900+174,780=4650 J \Delta G_{298}^{\circ}=-332,200-237,130+389,900+174,780=-4650 \mathrm{~J}

By Eq. (14.11b),

lnK=ΔGRT \ln K=\frac{-\Delta G^{\circ}}{R T}     (14.11b)

lnK298=ΔG298RT=4650(8.314)(298.15)=1.8759 or K298=6.5266 \ln K_{298}=\frac{-\Delta G_{298}^{\circ}}{R T}=\frac{4650}{(8.314)(298.15)}=1.8759 \quad \text { or } \quad K_{298}=6.5266

For the small temperature change from 298.15 to 373.15 K, Eq. (14.15) is adequate for estimating K. Thus,

lnKK=ΔHR(1T1T) \ln \frac{K}{K^{\prime}}=-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)     (14.15)

lnK373K298=ΔH298R(1373.151298.15) \ln \frac{K_{373}}{K_{298}}=\frac{-\Delta H_{298}^{\circ}}{R}\left(\frac{1}{373.15}-\frac{1}{298.15}\right)

or                       or lnK3736.5266=36408.314(1373.151298.15)=0.2951 \text { or } \quad \ln \frac{K_{373}}{6.5266}=\frac{3640}{8.314}\left(\frac{1}{373.15}-\frac{1}{298.15}\right)=-0.2951

and            K373=(6.5266)(0.7444)=4.8586 K_{373}=(6.5266)(0.7444)=4.8586

For the given reaction, Eq. (14.5), with x replacing y, yields:

yi=nin=ni0+νiεn0+νε y_i=\frac{n_i}{n}=\frac{n_{i_0}+\nu_i \varepsilon}{n_0+\nu \varepsilon}     (14.5)

xAcH=xEtOH=1εe2xEtAc=xH2O=εe2 x_{\mathrm{AcH}}=x_{\mathrm{EtOH}}=\frac{1-\varepsilon_e}{2} \quad x_{\mathrm{EtAc}}=x_{\mathrm{H}_2 \mathrm{O}}=\frac{\varepsilon_e}{2}

Because the pressure is low, Eq. (14.32) is applicable. In the absence of data for the activity coefficients in this complex system, we assume that the reacting species form an ideal solution. In this case Eq. (14.33) is employed, giving:

i(xiγi)νi=K \prod_i\left(x_i \gamma_i\right)^{\nu_i}=K     (14.32)

i(xi)νi=K \prod_i\left(x_i\right)^{\nu_i}=K     (14.33)

K=xEtAcxH2OxAcHxEtOH K=\frac{x_{\mathrm{EtAc}} x_{\mathrm{H}_2 \mathrm{O}}}{x_{\mathrm{AcH}} x_{\mathrm{EtOH}}}

Thus,              4.8586=(εe1εe)2 4.8586=\left(\frac{\varepsilon_e}{1-\varepsilon_e}\right)^2

Solution yields:

εe=0.6879 and xEtAc=0.6879/2=0.344 \varepsilon_e=0.6879 \quad \text { and } \quad x_{\mathrm{EtAc}}=0.6879 / 2=0.344

This result is in good agreement with experiment, even though the assumption of ideal solutions may be unrealistic. Carried out in the laboratory, the reaction yields a measured mole fraction of ethyl acetate at equilibrium of about 0.33.

Related Answered Questions

Question: 14.4

Verified Answer:

Hydration of ethylene means reaction of ethylene w...