Question 3.7: (a) Prove that u = e^-x (x sin y - y cos y) is harmonic. (b)...

(a) Prove that u = e^-x (x \sin y – y \cos y) is harmonic.

(b) Find v such that f(z) = u + iv is analytic.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

\begin{aligned} \frac{\partial u}{\partial x} &=\left(e^{-x}\right)(\sin y)+\left(-e^{-x}\right)(x \sin y-y \cos y)=e^{-x} \sin y-x e^{-x} \sin y+y e^{-x} \cos y \\ \frac{\partial^2 u}{\partial x^2} &=\frac{\partial}{\partial x}\left(e^{-x} \sin y-x e^{-x} \sin y+y e^{-x} \cos y\right)=-2 e^{-x} \sin y+x e^{-x} \sin y-y e^{-x} \cos y &(1)\\ \frac{\partial u}{\partial y} &=e^{-x}(x \cos y+y \sin y-\cos y)=x e^{-x} \cos y+y e^{-x} \sin y-e^{-x} \cos y \\ \frac{\partial^2 u}{\partial y^2} &=\frac{\partial}{\partial y}\left(x e^{-x} \cos y+y e^{-x} \sin y-e^{-x} \cos y\right)=-x e^{-x} \sin y+2 e^{-x} \sin y+y e^{-x} \cos y&(2) \end{aligned}

Adding (1) and (2) yields \left(\partial^2 u / \partial x^2\right)+\left(\partial^2 u / \partial y^2\right)=0 and u is harmonic.

(b) From the Cauchy –Riemann equations,

\begin{aligned} &\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=e^{-x} \sin y-x e^{-x} \sin y+y e^{-x} \cos y &(3)\\ &\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=e^{-x} \cos y-x e^{-x} \cos y-y e^{-z} \sin y &(4) \end{aligned}

Integrate (3) with respect to y, keeping x constant. Then

\begin{aligned} v &=-e^{-x} \cos y+x e^{-x} \cos y+e^{-x}(y \sin y+\cos y)+F(x) \\ &=y e^{-x} \sin y+x e^{-x} \cos y+F(x)&(5) \end{aligned}

where F(x) is an arbitrary real function of x.
Substitute (5) into (4) and obtain

-y e^{-x} \sin y-x e^{-x} \cos y+e^{-x} \cos y+F^{\prime}(x)=-y e^{-x} \sin y-x e^{-x} \cos y-y e^{-x} \sin y

or F^{\prime}(x)=0 and F(x) = c, a constant. Then, from (5),

v=e^{-x}(y \sin y+x \cos y)+c

For another method, see Problem 3.40.

Related Answered Questions

Question: 3.32

Verified Answer:

From the equivalences established in Problem 3.31,...
Question: 3.26

Verified Answer:

(a) The singularities in the finite z plane are lo...
Question: 3.41

Verified Answer:

If A = P + Qi, we have \operatorname{grad} ...
Question: 3.12

Verified Answer:

(a) We have w = sin z = sin(x + iy) = sin x cosh y...
Question: 3.11

Verified Answer:

By definition, w=e^z=e^{x+i y}=e^x(\cos y+...
Question: 3.39

Verified Answer:

Let z be given an increment Δz≠0 \text{ so...
Question: 3.8

Verified Answer:

Method 1 We have f(z) = f(x + iy) = u(x, y...