Question 8.10: Repeat Example 8.9 with 10% damping in the system. Use the t...

Repeat Example 8.9 with 10% damping in the system. Use the trapezoidal method.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The displacement response is now given by

u(t)=A \sin \omega_{d} t-B \cos \omega_{d} t \qquad (a)

where A and B are as in Equation 8.70, and

\begin{aligned}\omega_{d} &=\omega \sqrt{1-\xi^{2}} \\&=6.283 \sqrt{1-0.1^{2}} \\&=6.2515 \mathrm{rad} / \mathrm{s}\end{aligned}

Table E8. 10a Numerical evaluation of Duhamel’s equation, damped system.
\begin{matrix} \\ \hline \tau & p(\tau) &&& p(\tau) \mathrm{e}^{\xi \omega \tau} & \bar{A} & & p(\tau) \mathrm{e}^{\xi \omega \tau} & \bar{B}\\(s) & (\mathrm{kips}) & \mathrm{e}^{\xi \omega \tau} & \cos \omega_{\mathrm{d}} \tau & \cos \omega_{\mathrm{d}} \tau & \text{trapezoidal }& \sin \omega_{d} \tau & \sin \omega_{\mathrm{d}} \tau & \text{trapezoidal }\\\hline 0.0 & 0.0 & 1.0000 & 1.0000 & 0.000 & 0.000 & 0.0000 & 0.000 & 0.000 \\0.1 & 50.0 & 1.0648 & 0.8109 & 43.172 & 43.172 & 0.5852 & 31.156 & 31.156 \\0.2 & 86.6 & 1.1339 & 0.3150 & 30.392 & 117.276 & 0.9491 & 93.198 & 155.510 \\0.3 & 100.0 & 1.2074 & -0.3000 & -36.222 & 111.986 & 0.9540 & 115.186 & 363.894 \\0.4 & 86.6 & 1.2857 & -0.8015 & -89.240 & -13.476 & 0.5980 & 66.823 & 545.903 \\0.5 & 50.0 & 1.3691 & -0.9999 & -68.448 & -171.164 & 0.0158 & 1.084 & 613.810 \\0.6 & 0.0 & 1.4579 & -0.8200 & 0.000 & -239.612 & -0.5723 & 0.000 & 614.894 \\\hline\end{matrix}

\frac{I}{m \omega_{d}} \frac{\Delta \tau}{2}=\frac{1 \times 0.1}{2.533 \times 6.2515 \times 2}=3.1575 \times 10^{-3}

Table E8. 10b Numerical evaluation of Duhamel’s equation, damped system.

\begin{matrix}\hline t & A & B & \sin \omega_{d} t & \cos \omega_{d} t & \mathrm{e}^{-\xi \omega t} & \mathrm{e}^{-\xi \omega t} A \sin \omega_{d} t & \mathrm{e}^{-\xi \omega t} B \cos \omega_{d} t & 7-8 & \\\hline(\mathrm{I}) & (2) & (3) & (4) & (5) & (6) & (7) & (8) & (9) & \text{Equation b} \\\hline 0.1 & 0.1362 & 0.0983 & 0.5852 & 0.8109 & 0.9391 & 0.0749 & 0.0749 & 0.0000 & 0.0323 \\0.2 & 0.3700 & 0.4907 & 0.9491 & 0.3150 & 0.8819 & 0.3097 & 0.1363 & 0.1734 & 0.2254 \\0.3 & 0.3533 & 1.1481 & 0.9540 & -0.3000 & 0.8282 & 0.2792 & -0.2853 & 0.5645 & 0.6204 \\0.4 & -0.0425 & 1.7224 & 0.5980 & -0.8015 & 0.7778 & -0.0198 & -1.0737 & 1.0539 & 1.0961 \\0.5 & -0.5401 & 1.9366 & 0.0158 & -0.9999 & 0.7304 & -0.0063 & -1.4144 & 1.4081 & 1.4251 \\0.6 & -0.7560 & 1.9400 & -0.5723 & -0.8200 & 0.6850 & 0.2968 & -1.0912 & 1.3880 & 1.3772 \\ \hline \end{matrix}

The response calculations for the first 0.6 \mathrm{~s} are shown in Tables E8.10a and E8.10b. After 0.6 \mathrm{~s}, A and B remain unchanged and the response for subsequent intervals of time is given by Equation a with A and B equal to their values at 0.6 \mathrm{~s}.

The exact response to the sine-wave force for the first 0.6 \mathrm{~s} is given by

\begin{aligned}u(t)=& \frac{p_{0}}{k} \frac{1}{\left(1-\beta^{2}\right)^{2}+(2 \beta \xi)^{2}}\left\{\left(1-\beta^{2}\right) \sin \Omega t-2 \beta \xi \cos \Omega t\right\} \\&+\frac{p_{0}}{k} \frac{e^{-\omega \xi t}}{\left(1-\beta^{2}\right)^{2}+(2 \beta \xi)^{2}}\left\{2 \beta \xi \cos \omega_{d} t+\frac{\Omega}{\omega_{d}}\left(1+\beta^{2}-2 \frac{\omega_{d}^{2}}{\omega^{2}}\right) \sin \omega_{d} t\right\} \qquad (b)\end{aligned}

where p_{0}=100  \mathrm{kips}, \Omega=5.236  \mathrm{rad} / \mathrm{s}, and \beta=\Omega / \omega=0.833. The response values obtained from Equation b are also shown in Table E8.10b.

Related Answered Questions

Question: 8.P.13

Verified Answer:

\begin{array}{ccccc} \hline \text { Time } ...
Question: 8.P.1

Verified Answer:

\omega=\sqrt{\frac{4 k}{M+\frac{3 m}{2}}}[/...
Question: 8.14

Verified Answer:

On substituting for m, c, k, and [l...