Question 8.10: Repeat Example 8.9 with 10% damping in the system. Use the t...
Repeat Example 8.9 with 10% damping in the system. Use the trapezoidal method.
Learn more on how we answer questions.
The displacement response is now given by
u(t)=A \sin \omega_{d} t-B \cos \omega_{d} t \qquad (a)
where A and B are as in Equation 8.70, and
\begin{aligned}\omega_{d} &=\omega \sqrt{1-\xi^{2}} \\&=6.283 \sqrt{1-0.1^{2}} \\&=6.2515 \mathrm{rad} / \mathrm{s}\end{aligned}
Table E8. 10a Numerical evaluation of Duhamel’s equation, damped system.
\begin{matrix} \\ \hline \tau & p(\tau) &&& p(\tau) \mathrm{e}^{\xi \omega \tau} & \bar{A} & & p(\tau) \mathrm{e}^{\xi \omega \tau} & \bar{B}\\(s) & (\mathrm{kips}) & \mathrm{e}^{\xi \omega \tau} & \cos \omega_{\mathrm{d}} \tau & \cos \omega_{\mathrm{d}} \tau & \text{trapezoidal }& \sin \omega_{d} \tau & \sin \omega_{\mathrm{d}} \tau & \text{trapezoidal }\\\hline 0.0 & 0.0 & 1.0000 & 1.0000 & 0.000 & 0.000 & 0.0000 & 0.000 & 0.000 \\0.1 & 50.0 & 1.0648 & 0.8109 & 43.172 & 43.172 & 0.5852 & 31.156 & 31.156 \\0.2 & 86.6 & 1.1339 & 0.3150 & 30.392 & 117.276 & 0.9491 & 93.198 & 155.510 \\0.3 & 100.0 & 1.2074 & -0.3000 & -36.222 & 111.986 & 0.9540 & 115.186 & 363.894 \\0.4 & 86.6 & 1.2857 & -0.8015 & -89.240 & -13.476 & 0.5980 & 66.823 & 545.903 \\0.5 & 50.0 & 1.3691 & -0.9999 & -68.448 & -171.164 & 0.0158 & 1.084 & 613.810 \\0.6 & 0.0 & 1.4579 & -0.8200 & 0.000 & -239.612 & -0.5723 & 0.000 & 614.894 \\\hline\end{matrix}
Table E8. 10b Numerical evaluation of Duhamel’s equation, damped system.
\begin{matrix}\hline t & A & B & \sin \omega_{d} t & \cos \omega_{d} t & \mathrm{e}^{-\xi \omega t} & \mathrm{e}^{-\xi \omega t} A \sin \omega_{d} t & \mathrm{e}^{-\xi \omega t} B \cos \omega_{d} t & 7-8 & \\\hline(\mathrm{I}) & (2) & (3) & (4) & (5) & (6) & (7) & (8) & (9) & \text{Equation b} \\\hline 0.1 & 0.1362 & 0.0983 & 0.5852 & 0.8109 & 0.9391 & 0.0749 & 0.0749 & 0.0000 & 0.0323 \\0.2 & 0.3700 & 0.4907 & 0.9491 & 0.3150 & 0.8819 & 0.3097 & 0.1363 & 0.1734 & 0.2254 \\0.3 & 0.3533 & 1.1481 & 0.9540 & -0.3000 & 0.8282 & 0.2792 & -0.2853 & 0.5645 & 0.6204 \\0.4 & -0.0425 & 1.7224 & 0.5980 & -0.8015 & 0.7778 & -0.0198 & -1.0737 & 1.0539 & 1.0961 \\0.5 & -0.5401 & 1.9366 & 0.0158 & -0.9999 & 0.7304 & -0.0063 & -1.4144 & 1.4081 & 1.4251 \\0.6 & -0.7560 & 1.9400 & -0.5723 & -0.8200 & 0.6850 & 0.2968 & -1.0912 & 1.3880 & 1.3772 \\ \hline \end{matrix}The response calculations for the first 0.6 \mathrm{~s} are shown in Tables E8.10a and E8.10b. After 0.6 \mathrm{~s}, A and B remain unchanged and the response for subsequent intervals of time is given by Equation a with A and B equal to their values at 0.6 \mathrm{~s}.
The exact response to the sine-wave force for the first 0.6 \mathrm{~s} is given by
\begin{aligned}u(t)=& \frac{p_{0}}{k} \frac{1}{\left(1-\beta^{2}\right)^{2}+(2 \beta \xi)^{2}}\left\{\left(1-\beta^{2}\right) \sin \Omega t-2 \beta \xi \cos \Omega t\right\} \\&+\frac{p_{0}}{k} \frac{e^{-\omega \xi t}}{\left(1-\beta^{2}\right)^{2}+(2 \beta \xi)^{2}}\left\{2 \beta \xi \cos \omega_{d} t+\frac{\Omega}{\omega_{d}}\left(1+\beta^{2}-2 \frac{\omega_{d}^{2}}{\omega^{2}}\right) \sin \omega_{d} t\right\} \qquad (b)\end{aligned}
where p_{0}=100 \mathrm{kips}, \Omega=5.236 \mathrm{rad} / \mathrm{s}, and \beta=\Omega / \omega=0.833. The response values obtained from Equation b are also shown in Table E8.10b.