Question 8.13: Solve Example 8.12 by the Wilson θ method using θ = 1.5 and ...

Solve Example 8.12 by the Wilson θ method using θ = 1.5 and h = 0.1 s.

Table E8.13 Wilson-θ method.
\begin{matrix}\hline &&&&&u_{n+\theta} &\ddot{u}_{n+\theta}&\ddot{u}_{n+1}&\dot{u}_{n+1} & {u}_{n+1} & u_n \\ \text{Time}& {{u}_{n}} & {\dot{u}_{n}} & {\ddot{u}_{n}} & p_{n+\theta} & { (Eq. a) } & { (Eq. b) } & { (Eq. c) } & { (Eq. d) }& { (Eq. e) } & { (\text{theoretical}) } \\ \hline 0.0 & 0.0000 & 0.0000 & 0.00 & 75.0 & 0.0894 & 23.837 & 15.89 & 0.7946 & 0.0265 & 0.0000 \\0.1 & 0.0265 & 0.7946 & 15.89 & 104.9 & 0.3508 & 22.923 & 20.58 & 2.6188 & 0.1932 & 0.0323 \\0.2 & 0.1932 & 2.6181 & 20.58 & 106.7 & 0.7634 & 6.197 & 10.99 & 4.1966 & 0.5419 & 0.2254 \\0.3 & 0.5419 & 4.1966 & 10.99 & 79.9 & 1.1806 & -19.507 & -9.34 & 4.2791 & 0.9827 & 0.6204 \\0.4 & 0.9827 & 4.2791 & -9.34 & 31.7 & 1.3934 & -42.927 & -31.73 & 2.2254 & 1.3265 & 1.0961 \\0.5 & 1.3265 & 2.2254 & -31.73 & -25.0 & 1.2237 & -52.993 & -45.91 & -1.6564 & 1.3668 & 1.4251 \\0.6 & 1.3668 & -1.6564 & -45.91 & 0.0 & 0.7011 & -19.467 & -28.28 & -5.3658 & 1.0010 & 1.3772 \\0.7 & 1.0010 & -5.3658 & -28.28 & 0.0 & 0.0143 & 8.039 & -4.07 & -6.9832 & 0.3634 & 0.8683 \\0.8 & 0.3634 & -6.9832 & -4.07 & 0.0 & -0.6018 & 30.041 & 18.67 & -6.2529 & -0.3174 & 0.1105 \\0.9 & -0.3174 & -6.2529 & 18.67 & 0.0 & -0.9640 & 40.323 & 33.11 & -3.6641 & -0.8252 & -0.5974 \\1.0 & -0.8252 & -3.6641 & 33.11 & & & & & & & -1.0073 \\ \hline \end{matrix}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substitution of m, c, k, h, and \theta in Equation 8.136

\left\{\frac{6 m}{(\theta h)^2}+\frac{3 c}{\theta h}+k\right\} u_{n+\theta}=p_{n+\theta}+m\left\{\frac{6 u_n}{(\theta h)^2}+\frac{6}{\theta h} \dot{u}_n+2 \ddot{u}_n\right\}+c\left\{\frac{3}{\theta h} u_n+2 \dot{u}_n+\frac{\theta h}{2} \ddot{u}_n\right\} \qquad (8.136)

gives

839.13 u_{n+\theta}=p_{n+\theta}+739.13 u_{n}+107.69 \dot{u}_{n}+5.305 \ddot{u}_{n} \qquad (a)

where p_{n+\theta} is obtained from Equation 8.137.

\quad=p_n(1-\theta)+p_{n+1} \theta \quad \quad(8.137)

Equation 8.134

\ddot{u}_{n+\theta}=\frac{6}{(\theta h)^2}\left\{u_{n+\theta}-u_n-\theta h \dot{u}_n-\frac{(\theta h)^2}{3} \ddot{u}_n\right\} \quad(8.134)

now leads to

\ddot{u}_{n+\theta}=266.7\left(u_{n+\theta}-u_{n}\right)-40 \dot{u}_{n}-2 \ddot{u}_{n} \qquad (b)

From Equation 8.138

 \ddot{u}_{n+1}=\ddot{u}_n+\frac{\ddot{u}_{n+\theta}-\ddot{u}_n}{\theta} \quad(8.138)

we get

\ddot{u}_{n+1}=0.6667 \ddot{u}_{n+\theta}+0.3333 \ddot{u}_{n} \qquad (c)

Finally, substitution of Equation c in Equations 8.129

\dot{u}_{n+1}=\dot{u}_n+\frac{h}{2}\left(\ddot{u}_n+\ddot{u}_{n+1}\right) \qquad (8.129)

and 8.130

u_{n+1}=u_n+b \dot{u}_n+\frac{h^2}{3} \ddot{u}_n+\frac{h^2}{6} \ddot{u}_{n+1} \quad(8.130)

gives

\begin{aligned}&\dot{u}_{n+1}=\dot{u}_{n}+0.05\left(\ddot{u}_{n}+\ddot{u}_{n+1}\right) \qquad \qquad \qquad (d)\\&u_{n+1}=u_{n}+0.1 \dot{u}_{n}+0.00333 \ddot{u}_{n}+0.00167 \ddot{u}_{n+1} \qquad (e)\end{aligned}

Step-by-step time integration is carried out using Equations a through e. Response calculations for the first 1 \mathrm{~s} are shown in Table E8.13.

Related Answered Questions

Question: 8.P.13

Verified Answer:

\begin{array}{ccccc} \hline \text { Time } ...
Question: 8.P.1

Verified Answer:

\omega=\sqrt{\frac{4 k}{M+\frac{3 m}{2}}}[/...
Question: 8.14

Verified Answer:

On substituting for m, c, k, and [l...