Question 8.14: Solve Example 8.12 by the central difference method with h =...

Solve Example 8.12 by the central difference method with b=0.1 \mathrm{~s}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

On substituting for m, c, k, and h, Equation 8.144

\left(\frac{m}{h^2}+\frac{c}{2 h}\right) u_{n+1}=p_n+\left(-k+\frac{2 m}{h^2}\right) u_n+\left(\frac{c}{2 h}-\frac{m}{h^2}\right) u_{n-1} \qquad (8.144)

becomes

269.21 u_{n+1}=p_{n}+406.6 u_{n}-237.39 u_{n-1} \qquad (a)

Table E8. 14 Central difference method.
\begin{matrix} \\\hline & &&&u_{n+1} & \dot{u}_{n} & \ddot{u}_{n} & u_{n} \\ \text{Time }& {p_{n}} & {u_{n-1}} & {u_{n}} & (Eq. a) & { (Eq. b) } & { (Eq. c) } & { (\text{theoretical}) } \\\hline 0.0 & 0.0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0.0000 \\0.1 & 50.0 & 0.0000 & 0.0000 & 0.1857 & 0.9286 & 18.573 & 0.0323 \\0.2 & 86.6 & 0.0000 & 0.1857 & 0.6022 & 3.0110 & 23.074 & 0.2254 \\0.3 & 100.0 & 0.1857 & 0.6022 & 1.1172 & 4.6574 & 9.854 & 0.6204 \\0.4 & 86.6 & 0.6022 & 1.1172 & 1.4780 & 4.3792 & -15.418 & 1.0961 \\0.5 & 50.0 & 1.1172 & 1.4780 & 1.4329 & 1.5785 & -40.594 & 1.4251 \\0.6 & 0.0 & 1.4780 & 1.4329 & 0.8609 & -3.0859 & -52.693 & 1.3772 \\0.7 & 0.0 & 1.4329 & 0.8609 & 0.0366 & -6.9813 & -25.216 & 0.8683 \\0.8 & 0.0 & 0.8609 & 0.0366 & -0.7038 & -7.8231 & 8.381 & 0.1105 \\0.9 & 0.0 & 0.0366 & -0.7038 & -1.0953 & -5.6593 & 34.893 & -0.5974 \\1.0 & 0.0 & -0.7038 & -1.0953 & & & & -1.0073 \\ \hline \end{matrix}

Equations 8.139

 \dot{u}_n=\frac{1}{2 h}\left(u_{n+1}-u_{n-1}\right)+R \qquad(8.139)

and 8.141

 \ddot{u}_n=\frac{1}{h^2}\left(u_{n+1}-2 u_n+u_{n-1}\right)+R \qquad(8.141)

then give

\begin{aligned}&\dot{u}_{n}=5\left(u_{n+1}-u_{n-1}\right)  \qquad    \qquad (b) \\&\ddot{u}_{n}=100\left(u_{n+1}-2 u_{n}+u_{n-1}\right) \qquad (c) \end{aligned}

To start the integration, Equation 8.145

 u_{-1}=u_0+\frac{h^2}{2} \ddot{u}_0-h \dot{u}_0 \qquad(8.145)

is used to obtain u_{-1}. In this case because u_{0}, \dot{u}_{0}, and \ddot{u}_{0} are all zero, u_{-1} is also zero. Equations a, b, and c are now used to carry out step-by-step integration. Response calculations are shown in Table E8.14 for the first 1 \mathrm{~s}. If the velocity and acceleration are not of interest, the corresponding columns may be omitted from the table.

Related Answered Questions

Question: 8.P.13

Verified Answer:

\begin{array}{ccccc} \hline \text { Time } ...
Question: 8.P.1

Verified Answer:

\omega=\sqrt{\frac{4 k}{M+\frac{3 m}{2}}}[/...
Question: 8.13

Verified Answer:

Substitution of m, c, k, h, and [la...