Question 7.6.5: Solving a Trigonometric Equation (Squaring) Solve tan x + √3...

Solving a Trigonometric Equation (Squaring)

Solve \tan x + \sqrt{3} = \sec x over the interval [0, 2π).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We must rewrite the equation in terms of a single trigonometric function. Because the tangent and secant functions are related by the identity 1 + \tan² x = \sec² x, square each side and express \sec² x in terms of tan2 x.

(\tan x + \sqrt{3})² = (\sec x)²                               Square each side.

\fbox{Don’t forget the middle term.}

   ↓

\tan² x + 2\sqrt{3} \tan x + 3 = \sec² x                (x + y)² = x² + 2xy + y²

\tan² x + 2\sqrt{3} \tan x + 3 = 1 + \tan² x        Pythagorean identity

2\sqrt{3} \tan x = -2                                            Subtract 3 + \tan² x.

 \tan x = – \frac{1}{\sqrt{3}}                                                  Divide by 2\sqrt{3}.

\tan x = – \frac{\sqrt{3}}{3}                                                   Rationalize the denominator.

Solutions of \tan x = – \frac{\sqrt{3}}{3} over [0, 2π) are \frac{5π}{6} and \frac{11π}{6} . These possible, or proposed, solutions must be checked to determine whether they are also solutions of the original equation.

CHECK    \tan x + \sqrt{3} = \sec x            Original equation

\left.\begin{matrix} \tan \left(\frac{5\pi }{6} \right)+\sqrt{3}≟\sec\left(\frac{5\pi }{6} \right) \\ \\ -\frac{\sqrt{3} }{3}+\frac{3\sqrt{3} }{3}≟-\frac{2\sqrt{3} }{3} \\ \\ \frac{2\sqrt{3} }{2}=-\frac{2\sqrt{3} }{3}& \text{False} \end{matrix} \right| \begin{matrix} \tan \left(\frac{11\pi }{6} \right)+\sqrt{3}≟\sec \left(\frac{11\pi }{6} \right) \\ \\  -\frac{\sqrt{3} }{3} +\frac{3\sqrt{3} }{3} ≟\frac{2\sqrt{3} }{3} \\ \\ \frac{2\sqrt{3} }{3}=\frac{2\sqrt{3} }{3}     ✓ & \text{ True} \end{matrix}

As the check shows, only \frac{11\pi }{6} is a solution, so the solution set is { \frac{11π}{6} }.

7.6.5

Related Answered Questions

Question: 7.6.4

Verified Answer:

We multiply the factors on the left and subtract 1...
Question: 7.7.4

Verified Answer:

Isolate one inverse function on one side of the eq...
Question: 7.6.3

Verified Answer:

\tan² x + \tan x - 2 = 0           ...
Question: 7.6.2

Verified Answer:

\sin θ \tan θ = \sin θ             ...