Question 7.7.4: Solving an Inverse Trigonometric Equation Using an Identity ...
Solving an Inverse Trigonometric Equation Using an Identity
Solve \arcsin x – \arccos x =\frac{π}{6} .
Learn more on how we answer questions.
Isolate one inverse function on one side of the equation.
\arcsin x – \arccos x = \frac{π}{6} Original equation
\arcsin x = \arccos x + \frac{π}{6} Add arccos x. (1)
x = \sin (\arccos x +\frac{π}{6}) Definition of arcsine
Let u = \arccos x. The arccosine function yields angles in quadrants I and II, so 0 ≤ u ≤ π by definition.
x = \sin (u + \frac{π}{6}) Substitute.
x = \sin u \cos\frac{π}{6} + \cos u \sin \frac{π}{6} Sine sum identity (2)
Use equation (1) and the definition of the arcsine function.
-\frac{π}{2} ≤ \arccos x +\frac{π}{6} ≤ \frac{π}{2} Range of arcsine is [ – \frac{π}{2} , \frac{π}{2} ] .
– \frac{2π}{3} ≤\arccos x ≤ \frac{π}{3} Subtract \frac{π}{6} from each part.
Because both 0 ≤ \arccos x ≤ π and – \frac{2π}{3}≤ \arccos x ≤ \frac{π}{3}, the intersection yields 0 ≤ \arccos x ≤ \frac{π}{3} . This places u in quadrant I, and we can sketch the triangle in Figure 40. From this triangle we find that \sin u =\sqrt{1 – x²}. Now substitute into equation (2) using \sin u =\sqrt{1 – x²} , \sin \frac{π}{6} =\frac{ 1}{ 2} , \cos \frac{π}{6} = \frac{\sqrt{3}}{ 2} , and \cos u = x.
x = \sin u \cos \frac{π}{6}+ \cos u \sin \frac{π}{6} (2)
x = ( \sqrt{1 – x²}) \frac{\sqrt{3}}{ 2} + x • \frac{1}{2} Substitute.
2x = ( \sqrt{1 – x²} )\sqrt{3} + x Multiply by 2.
x = ( \sqrt{3}) \sqrt{1 – x²} Subtract x; commutative property
x² = 3(1 – x²) Square each side; (ab)² = a² b²
↑
\fbox{Square each factor.}x² = 3 – 3x² Distributive property
x² = \frac{3}{4} Add 3x². Divide by 4.
x = \frac{\sqrt{3}}{ 4} Take the square root on each side.
↑
\fbox{Choose the positive square root, x > 0.}x = \frac{\sqrt{3}}{ 2} Quotient rule: \sqrt[n]{\frac{a}{b} } =\frac{\sqrt[n]{a} }{\sqrt[n]{b} }
CHECK A check is necessary because we squared each side when solving the equation.
\arcsin x -\arccos x = \frac{π}{6} Original equation
\arcsin \frac{\sqrt{3}}{ 2} – \arccos \frac{\sqrt{3}}{ 2}≟ \frac{π}{6} Let x = \frac{\sqrt{3}}{ 2} .
\frac{π}{3}- \frac{π}{6} ≟\frac{π}{6} Substitute inverse values.
\frac{π}{6} = \frac{π}{6} ✓ True
The solution set is { \frac{\sqrt{3}}{ 2}} .
