Question 2.108: Determine the magnitude and coordinate direction angles of t...

Determine the magnitude and coordinate direction angles of the resultant force. Set F_B = 630 N, F_C = 520 N and F_D = 750 N, and x = 3 m and z = 3.5 m.

2.108
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Force Vectors: The unit vectors u _B, u _C \text {, and } u _D \text { of } F _B, F _C \text {, and } F _Dmust be determined first. From Fig. a,

 

u _B=\frac{ r _B}{r_B}=\frac{(-3-0) i +(0-6) j +(4.5-2.5) k }{\sqrt{(-3-0)^2+(0-6)^2+(4.5-2.5)^2}}=-\frac{3}{7} i -\frac{6}{7} j +\frac{2}{7} k

 

u _C=\frac{ r _C}{r_C}=\frac{(2-0) i +(0-6) j +(4-2.5) k }{\sqrt{(2-0)^2+(0-6)^2+(4-2.5)^2}}=\frac{4}{13} i -\frac{12}{13} j +\frac{3}{13} k

 

u _D=\frac{ r _D}{r_D}=\frac{(3-0) i +(0-6) j +(-3.5-2.5) k }{\sqrt{(0-3)^2+(0-6)^2+(-3.5-2.5)^2}}=\frac{1}{3} i -\frac{2}{3} j -\frac{2}{3} k

 

Thus, the force vectors F _B, F _C \text {, and } F _D are given by

 

F _B=F_B u _B=630\left(-\frac{3}{7} i -\frac{6}{7} j +\frac{2}{7} k \right)=\{-270 i -540 j +180 k \} N

 

F _C=F_C u _C=520\left(\frac{4}{13} i -\frac{12}{13} j +\frac{3}{13} k \right)=\{160 i -480 j +120 k \} N

 

F _D=F_D u _D=750\left(\frac{1}{3} i -\frac{2}{3} j -\frac{2}{3} k \right)=\{250 i -500 j -500 k \} N

 

Resultant Force:

 

\begin{aligned}F _R &= F _B+ F _C+ F _D=(-270 i -540 j +180 k )+(160 i -480 j +120 k )+(250 i -500 j -500 k ) \\&=[140 i -1520 j -200 k ] N\end{aligned}

The magnitude of F _R  is 

\begin{array}{c}{{F_{R}=\sqrt{\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}+\left(F_{R}\right)_{x}^{2}}}}\\ {{=\sqrt{140^{2}+\left(-1520\right)^{2}+\left(-200\right)^{2}}=1.539.48\,\mathrm{N}=1.54\,\mathrm{kN}}}\end{array}

The coordinate direction angles of F _R are

\alpha=\cos ^{-1}\left[\frac{\left(F_R\right)_x}{F_R}\right]=\cos ^{-1}\left(\frac{140}{1539.48}\right)=84.8^{\circ}

 

\beta=\cos ^{-1}\left[\frac{\left(F_R\right)_y}{F_R}\right]=\cos ^{-1}\left(\frac{-1520}{1539.48}\right)=171^{\circ}

 

\gamma=\cos ^{-1}\left[\frac{\left(F_R\right)_z}{F_R}\right]=\cos ^{-1}\left(\frac{-200}{1539.48}\right)=97.5^{\circ}

Related Answered Questions

Question: 2.123

Verified Answer:

Position Vectors: The position vectors r _{...
Question: 2.122

Verified Answer:

Position Vectors: The position vectors and must be...
Question: 2.121

Verified Answer:

Unit Vectors: The unit vectors and must be determi...
Question: 2.8

Verified Answer:

Parallelogram Law: The parallelogram law of additi...