Question 19.6: The beam in Example 19.5 is subjected to a vertical upward f...

The beam in Example 19.5 is subjected to a vertical upward force P along d.o.f. 5 of component 2. What are the resulting vertical displacements at each node of the finite element mesh.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Referring to the d.o.f. of component 2 the force vector is given by

\left(\mathbf{f}^{T}\right)^{(2)}=\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0\end{array}\right] \qquad (a)

Transforming to the generalized coordinates as per Equation 19.85

\begin{gathered}\mathbf{u}^{(2)}=\mathbf{T}^{(2)} \mathbf{p}^{(2)} \\\left\{\begin{array}{l}\mathbf{u}_i \\\mathbf{u}_a \\\mathbf{u}_c \\\mathbf{u}_r\end{array}\right\}^{(2)}=\left[\begin{array}{cccc}\boldsymbol{\Phi}_{k k} & \boldsymbol{\Psi}_{k a} & \boldsymbol{\Psi}_{k c} & \boldsymbol{\Psi}_{k r} \\\boldsymbol{\Phi}_{a k} & \boldsymbol{\Psi}_{a a} & \boldsymbol{\Psi}_{a c} & \boldsymbol{\Psi}_{a r} \\0 & 0 & \mathbf{I}_{c c} & 0 \\0 & 0 & 0 & \mathbf{I}_{r r}\end{array}\right]^{(2)}\left\{\begin{array}{l}\mathbf{p}_k \\\mathbf{p}_a \\\mathbf{p}_c \\\mathbf{p}_r\end{array}\right\}\end{gathered}        (19.85)

\tilde{\mathbf{f}}^{(2)}=\left(\mathbf{T}^{T}\right)^{(2)} \mathbf{f}^{(2)} \qquad (b)

On carrying out the operations in Equation (b) we get

\left(\tilde{\mathbf{f}}^{T}\right)^{(2)}=\left[\begin{array}{llllll}50.0260 & -71.2736 & -52.0292 & -0.3064 & 25.0000 & 75.0000\end{array}\right]\qquad (c)

The transformed force vector for component 1, \mathbf{f}^{(1)}, is a null vector of size 5 by 1 .

Assembling the two force vectors and applying the coupling transformation we get

\tilde{\mathbf{f}}=\mathbf{S}^{T}\left\{\begin{array}{c}\tilde{\mathbf{f}}^{(1)} \\\tilde{\mathbf{f}}^{(2)}\end{array}\right\}\qquad (d)

Equation (d) leads to

\tilde{\mathrm{f}}^T = [−0.9686 1.7117 −2.5071 −0.2873 24.1530 50.7790 −69.7566 −54.3539 75.3388]         (e)

The generalized displacements are given by

\mathbf{q}=\tilde{\mathbf{K}}^{-1} \tilde{\mathbf{f}}  \qquad (f)

Equation (f) yields

\mathrm{q}^T = \frac{l^3}{EI} = [230.61 −38.374 12.503 299.92 4533.3 −306.4 −66.337 14.474 138883.0]          (g)

Transforming back to the generalized coordinates for the components

\left\{\begin{array}{l}p^{(1)} \\p^{(2)}\end{array}\right\}=S q       (h)

Equation (h) yields

\begin{aligned}\left(\mathbf{p}^{T}\right)^{(1)} &=\frac{l^{3}}{E I}\left[\begin{array}{lllll}230.61 & -38.374 & 12.503 & 299.92 & 4533.3\end{array}\right] \qquad (i) \\\left(\mathbf{p}^{T}\right)^{(2)} &=\frac{l^{3}}{E I}\left[\begin{array}{llllll}-306.4 & -66.337 & 14.474 & -301.35 & 4533.3 & 138883.0\end{array}\right] \qquad (j)\end{aligned}

Finally transforming to the physical coordinates of the components we have

\mathbf{u}^{(1)}=T^{(1)} \mathbf{p}^{(1)} \quad \text { and } \quad \mathbf{u}^{(2)}=T^{(2)} p^{(2)}       (k)

Equation (\mathrm{k}) yields

(u^T)^{(1)} = \frac{l^3}{EI} [333.3 650.0 1266.7 1200.0 2700.0 1650.0 2000.0 4533.3]      (l)

(u^T)^{(2)} = \frac{l^3}{EI} [6667.0 2250.0 9000.0 2400.0 11433.0 2450.0 2000.0 2449.0 4533.0 13883.0]       (m)

In Equations (l) and (\mathrm{m}) the slopes \theta have again been given in terms of l \theta.

The vertical displacements in component 1 are obtained from

\left[\begin{array}{llll}u(1) & u(3) & u(5) & u(8)\end{array}\right]^{(1)}=\frac{l^{3}}{E I}\left[\begin{array}{llll}333.3 & 1266.7 & 2700.0 & 4533.3\end{array}\right]     (n)

The displacements in component 2 are

\left[\begin{array}{lllll}u(9) & u(1) & u(3) & u(5) & u(10)\end{array}\right]^{(2)}=\frac{l^{3}}{E I}\left[\begin{array}{lllll}4533.0 & 6667.0 & 9000.0 & 11433.0 & 13883.0\end{array}\right]       (o)

These displacement values match with the exact results to four significant digits.

Related Answered Questions