Question 17.SP.15: A soccer ball tester consists of a 15-kg slender rod AB with...

A soccer ball tester consists of a 15-kg slender rod AB with a 1.1-kg simulated foot located at A and a torsional spring located at pin B. The torsional spring has a spring constant of  k_t = 910 N·m and is unstretched when AB is vertical. The length of AB is 0.9 m, and you can assume that the foot can be modeled as a point mass. Knowing that the velocity of the 0.45-kg soccer ball is 30 ft/s after impact, determine (a) the coefficient of restitution between the simulated foot and the ball, (b) the impulse at B during the impact.

STRATEGY: This problem can be broken into two distinct stages of motion. In stage 1, the arm moves downward under the influence of gravity and the torsional spring. You can use the conservation of energy for this stage. In stage 2, the foot hits the ball, and you need to use both the principle of impulse and momentum and the coefficient of restitution.

MODELING: Each stage requires a different system. For stage 1, your system is rod AB, foot B, and the torsional spring. In stage 2, your system is rod AB, foot B, and the soccer ball. The appropriate diagrams are drawn in the analysis section. You can model AB as a slender rod, so its mass moment of inertia is

\bar{I}_{A B}=\frac{1}{12} m_{A B} l^2=\frac{1}{12}(15  \mathrm{~kg})(0.9  \mathrm{~m})^2=1.0125  \mathrm{~kg} \cdot \mathrm{m}^2

Screenshot 2022-11-14 090129
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

ANALYSIS:
Rod AB Moves Down. Apply the principle of conservation of energy

T_1  +  V_{\mathrm{g}_1}  +  V_{\mathrm{e}_1}=T_2  +  V_{\mathrm{g}_2}  +  V_{\mathrm{e}_2}               (1)

Position 1. The system starts from rest, so   T_1=0.  Using the datum defined in Fig. 1, you know  V_{\mathrm{g}_1}=0,  and since the spring is unstretched at position 2, you find

V_{\mathrm{e}_1}=\frac{1}{2} k_t \theta^2=\frac{1}{2}(910  \mathrm{~N} \cdot \mathrm{m})\left(\frac{\pi}{2}\right)^2=1123  \mathrm{~J}

Position 2. The elastic potential energy is  V_{\mathrm{e}_2}=0,  and the gravitational potential energy is

\begin{aligned}V_{\mathrm{g}_2} &=-m_{A B} g \frac{l}{2}  –  m_A g l=-(15  \mathrm{~kg})\left(9.81  \mathrm{~m} / \mathrm{s}^2\right)(0.45  \mathrm{~m})  –  (1.1  \mathrm{~kg})\left(9.81  \mathrm{~m} / \mathrm{s}^2\right)(0.9  \mathrm{~m}) \\&=-75.93  \mathrm{~J}\end{aligned}

The kinetic energy is

T_2=\frac{1}{2} m_A v_A^2  +  \frac{1}{2} m_{A B} v_G^2  +  \frac{1}{2} \bar{I}_{A B} \omega^2

You can relate the velocity of the foot and the velocity of the center of gravity of the rod to the angular velocity of AB by recognizing that AB is undergoing fixed-axis rotation. Therefore,  v_G=\omega \frac{l}{2}  and  v_A=\omega l .  Substituting these into the expression for  T_2  and putting in values gives

T_2=\frac{1}{2}\left(m_A l^2  +  m_{A B}\left(\frac{l}{2}\right)^2  +  \bar{I}_{A B}\right) \omega^2=2.4705  \omega^2

Substituting these energy terms into Eq. (1) gives

0  +  0  +  1123=2.4705 \omega^2  –  75.93  +  0

Solving for the angular velocity, you find  \omega=22.03  \mathrm{rad} / \mathrm{s}.  Knowing ω, you can calculate the velocities   v_G=9.912  \mathrm{~m} / \mathrm{s}  and  v_A=19.824  \mathrm{~m} / \mathrm{s}.

Foot A Impacts the Soccer Ball. Impulse–momentum diagrams for the impact on the ball are shown in Fig. 2.

Taking moments about B gives you

+\Lsh   moments about B:

m_A v_A l  +  m_{A B} v_G \frac{l}{2}  +  I_{A B} \omega  +  0=m_A v_A^{\prime} l  +  m_{A B} v_G^{\prime} \frac{l}{2}  +  \bar{I}_{A B} \omega^{\prime}  +  m_S v_S^{\prime} l                   (2)

The equation for the coefficient of restitution is

v_S^{\prime}  –  v_A^{\prime}=e\left(v_A  –  0\right)                  (3)

where  v_S^{\prime}=30  \mathrm{~m} / \mathrm{s}.  From kinematics, you know   v_A^{\prime}=\omega^{\prime} l  and  v_G^{\prime}=\omega^{\prime}(l / 2).  Using these kinematic equations and Eqs. (2) and (3), you can solve for the unknown quantities

v_A^{\prime}=17.61  \mathrm{~m} / \mathrm{s}                   \quad v_G^{\prime}=8.81  \mathrm{~m} / \mathrm{s}                 \quad \omega^{\prime}=19.57  \mathrm{rad} / \mathrm{s}                 \quad e=0.625

e=0.625

Impulses During Impact. Applying impulse–momentum in the x-and y-directions gives

\stackrel{+}{\rightarrow} x \text {-components: }                 \quad m_{A B} v_G  +  m_A v_A  +  R_x \Delta t=m_{A B} v_G^{\prime}  +  m_A v_A^{\prime}+m_S v_S^{\prime}               (4)

+\uparrow y \text {-components: }                 \quad 0  +  R_y \Delta t=0               (5)

Solving these equations, you find  R_x \Delta t=-5.53 \mathrm{~N}  and  R_y \Delta t=0.

\mathrm{R} \Delta t=5.53  \mathrm{~N} \leftarrow

REFLECT and THINK: This coefficient of restitution seems reasonable. As you decrease the pressure in the ball, you would expect the coefficient of restitution to decrease; therefore, the distance the ball travels will decrease. If you had been asked to determine the reactions at B after the impact, you would need to draw a free-body diagram and kinetic diagram for your system and apply Newton’s second law.

Screenshot 2022-11-14 092821
Screenshot 2022-11-14 092924

Related Answered Questions