Question 15.SP.20: In the Geneva mechanism of Sample Prob. 15.19, disk D rotate...

In the Geneva mechanism of Sample Prob. 15.19, disk D rotates with a constant counterclockwise angular velocity  \boldsymbol{\omega}_D  of 10 rad/s. At the instant when  \phi  = 150°, determine the angular acceleration of disk S.

STRATEGY: You have two rigid bodies whose motions are related; therefore use rigid-body kinematics. Since point P is moving in a slot, use a rotating reference frame.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

MODELING and ANALYSIS: Since you are computing accelerations instead of velocities, you need to use Eq. (15.36), which includes the Coriolis acceleration. You found the angular velocity of the frame  \mathcal{S}  attached to disk S and the velocity of the pin relative to   \mathcal{S}  in Sample Prob. 15.19:

\mathbf{a}_P=\mathbf{a}_{P^{\prime}}  +  \mathbf{a}_{P / \mathscr{F}}  +  \mathbf{a}_C                          (15.36)

\begin{gathered}\omega_{\mathcal{S}}=4.08  \mathrm{rad} / \mathrm{s} \circlearrowright \\ \beta=42.4^{\circ}          \quad \mathbf{v}_{P/ \mathcal{S}}=477  \mathrm{~mm} / \mathrm{s} \text{⦫} 42.4^{\circ}\end{gathered}

Since pin P moves with respect to the rotating frame  \mathcal{S},  you have

\mathbf{a}_P=\mathbf{a}_{P^{\prime}}  +  \mathbf{a}_{P /\mathcal{S}}  +  \mathbf{a}_c                (1)

Investigate each term of this vector equation separately.

Absolute Acceleration  a_P.  Since disk D rotates with a constant angular velocity, the absolute acceleration  a_P  is directed toward B. This gives

\begin{aligned}&a_P=R \omega_D^2=(500  \mathrm{~mm})(10  \mathrm{rad} / \mathrm{s})^2=5000  \mathrm{~mm} / \mathrm{s}^2 \\&a_P=5000  \mathrm{~mm} / \mathrm{s}^2 \text { ⦪ }^{\circ} 0^{\circ}\end{aligned}

Acceleration  a_{P^{\prime}}  of the Coinciding Point  P^{\prime} Resolve into normal and tangential components the acceleration   a_{P^{\prime}}  of the point  P^{\prime}  of the frame  \mathcal{S}  that coincides with P at the given instant. (Recall from Sample Prob. 15.19 that r = 37.1 mm.)

\begin{aligned}&\left(a_{P^{\prime}}\right)_n=r \omega_{\mathcal{S}}^2=(37.1  \mathrm{~mm})(4.08  \mathrm{rad} / \mathrm{s})^2=618  \mathrm{~mm} / \mathrm{s}^2 \\&\left(\mathbf{a}_{P^{\prime}}\right)_n=618  \mathrm{~mm} / \mathrm{s}^2 \text{⦫} 42.4^{\circ} \\&\left(a_{P^{\prime}}\right)_t=r \alpha_{\mathcal{S}}=37.1  \alpha_{\mathcal{S}} \quad\left(\mathbf{a}_{P^{\prime}}\right)_t=37.1  \alpha_{\mathcal{S}} \text{ ⦮ } 42.4^{\circ}\end{aligned}

Relative Acceleration  a_{P/\mathcal{S}}.  Since the pin P moves in a straight slot cut in disk S, the relative acceleration  a_{P/\mathcal{S}}  must be parallel to the slot; i.e., its direction must be ⦨ 42.4°.

Coriolis Acceleration  a_C.  Rotating the relative velocity  \mathrm{v}_{P/\mathcal{S}}  through 90° in the sense of  \omega_{\mathcal{S}},  you obtain the direction of the Coriolis component of the acceleration: \text{ ⦭ } 42.4°. You have

\begin{gathered}a_C=2 \omega_{\mathcal{S}} \mathrm{v}_{P /\mathcal{S}}=2(4.08  \mathrm{rad} / \mathrm{s})(477  \mathrm{~mm} / \mathrm{s})=3890  \mathrm{~mm} / \mathrm{s}^2 \\\mathbf{a}_C=3890  \mathrm{~mm} / \mathrm{s}^2 \text{⦭} 42.4^{\circ}\end{gathered}

Rewrite Eq. (1) and substitute the accelerations found (Fig. 1):

\begin{aligned}&\mathbf{a}_p=\left(\mathbf{a}_p^\prime \right)_n  +  \left(\mathbf{a}_p^\prime\right)_t  +  \mathbf{a}_{P /\mathcal{S}}  +  \mathbf{a}_C \\&{\left[5000 \text { ⦪ } 30^{\circ}\right]=\left[618 \text{⦫} 42.4^{\circ}\right]  +  \left[37.1 \alpha_g \text{⦮} 42.4^{\circ}\right]} \\&+\left[a_{P /\mathcal{S}}  \text{ ⦨}  42.4^{\circ}\right]  +  \left[3890 \text{ ⦭ } 42.4^{\circ}\right] \\& \end{aligned}

Equating components in a direction perpendicular to the slot,

\begin{array}{r}5000 \cos 17.6^{\circ}=37.1 \alpha_{\mathcal{S}} –  3890 \\\alpha_S=\alpha_{\mathcal{S}}=233  \mathrm{rad} / \mathrm{s}^2 \circlearrowright \end{array}

REFLECT and THINK: It seems reasonable that, since disk S starts and stops over the very short time intervals when pin P is engaged in the slots, the disk must have a very large angular acceleration. An alternative approach would have been to use the vector algebra.

Screenshot 2022-11-23 193456

Related Answered Questions