Question 15.SP.5: Collars A and B are pin-connected to bar ABD and can slide a...
Collars A and B are pin-connected to bar ABD and can slide along fixed rods. Knowing that at the instant shown the velocity of A is 0.9 m/s to the right, determine (a) the angular velocity of ABD, (b) the velocity of point D.
STRATEGY: Use the kinematic equation that relates the velocity of two points on the same rigid body. Because you know the directions of the velocities of points A and B, choose these two points to relate.

Learn more on how we answer questions.
MODELING and ANALYSIS: Model bar ABD as a rigid body. From kinematics you know
\mathbf{v}_B=\mathbf{v}_A + \mathbf{v}_{B / A}=\mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{B / A}
Substituting in known values (Fig. 1) and assuming \boldsymbol{\omega}=\omega \mathbf{k} gives you
\begin{aligned}v_B \cos 60^{\circ} \mathbf{i} + v_B \sin 60^{\circ} \mathbf{j}=(0.9) \mathbf{i}+\\\omega \mathbf{k} \times\left[\left(0.3 \cos 30^{\circ}\right) \mathbf{i} + \left(0.3 \sin 30^{\circ}\right) \mathbf{j}\right] \\0.500 v_B \mathbf{i} + 0.866 v_B \mathbf{j}=(0.9 – 0.15 \omega) \mathbf{i} + 0.260 \omega \mathbf{j}\end{aligned}
Equating components,
\begin{aligned}\mathrm{i}: &=0.500 v_B=0.9 – 0.15 \omega \\\mathrm{j}: &=0.866 v_B=0.260 \omega\end{aligned}
Solving these equations gives you v_B = 0.900 m/s and ω = 3.00 rad/s
\omega=3.00 \mathrm{rad} / \mathrm{s}\Lsh
Velocity of D. The relationship between the velocities of A and D is
\mathbf{v}_D=\mathbf{v}_A + \mathbf{v}_{D / A}=\mathbf{v}_D + \omega \times \mathbf{r}_{D / A}
Substituting in values from above gives
\begin{aligned}&\mathbf{v}_D=(0.9) \mathbf{i} + 3.00 \mathbf{k} \times\left[\left(0.6 \cos 30^{\circ}\right) \mathbf{i} + \left(0.6 \sin 30^{\circ}\right) \mathbf{j}\right] \\&\mathbf{v}_D=(0.9 – 0.9) \mathbf{i} + 1.559 \mathbf{j}\end{aligned}
\mathbf{v}_D=1.559 \mathrm{~m} / \mathrm{s} \uparrow
REFLECT and THINK: The velocity of point D is straight up at this instant in time, but as the bar continues to rotate counterclockwise, the direction of the velocity of D will continuously change.
