Question 6.10: Computing an Inverse Laplace Transform Find the inverse Lapl...

Computing an Inverse Laplace Transform

Find the inverse Laplace transform of

F(s)=\frac{2}{s+3}+\frac{4}{s^{2}+4}+\frac{4}{s}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known Quantities: Function to be inverse Laplace-transformed.

Find: f(t)=\mathcal{L}^{-1}\{F(s)\}.

Schematics, Diagrams, Circuits, and Given Data:

F(s)=\frac{2}{s+3}+\frac{4}{s^{2}+4}+\frac{4}{s}=F_{1}(s)+F_{2}(s)+F_{3}(s)

Assumptions: None.

Analysis: Using Table 6.1,

Table 6.1 Laplace transform pairs
\begin{array}{ll} \hline {\boldsymbol{f}(\boldsymbol{t})} & \boldsymbol{F}(\boldsymbol{s}) \\\hline\delta(t) (\text{unit impulse}) & 1 \\\\u(t) (\text{unit step}) & \frac{1}{s} \\ \\e^{-a t} u(t) & \frac{1}{s+a}\\ \\\sin \omega t u(t) & \frac{\omega}{s^2+\omega^2}\\ \\ \cos \omega t u(t) & \frac{s}{s^2+\omega^2} \\\\e^{-a t} \sin \omega t u(t) & \frac{\omega}{(s+a)^2+\omega^2}\\ \\e^{-a t} \cos \omega t u(t) & \frac{s+a}{(s+a)^2+\omega^2} \\\\t u(t) & \frac{1}{s^2} \\ \hline\end{array}

we can individually inverse-transform each of the elements of F(s) :

\begin{aligned}&f_{1}(t)=2 \mathcal{L}^{-1}\left(\frac{1}{s+3}\right)=2 e^{-3 t} u(t) \\&f_{2}(t)=2 \mathcal{L}^{-1}\left(\frac{2}{s^{2}+2^{2}}\right)=2 \sin (2 t) u(t) \\&f_{3}(t)=4 \mathcal{L}^{-1}\left(\frac{1}{s}\right)=4 u(t)\end{aligned}

Thus

f (t) = f_1(t) + f_2(t) + f_3(t) = (2e^{−3t} + 2  \sin(2t) + 4)u(t).

Related Answered Questions

Question: 6.11

Verified Answer:

Known Quantities: Function to be inverse Laplace-t...
Question: 6.9

Verified Answer:

Known Quantities: Function to be Laplace-transform...
Question: 6.8

Verified Answer:

Known Quantities: Function to be Laplace-transform...
Question: 6.12

Verified Answer:

Known Quantities: Values of resistor, inductor, an...