Question 3.9: Charles has increased his activity by doing more exercise. A...

Charles has increased his activity by doing more exercise. After a session of using weights, he has a sore arm. An ice bag is filled with 125 g of ice at 0 °C. How much heat, in kilojoules, is absorbed to melt the ice and raise the temperature of the water to body temperature, 37.0 °C?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STEP 1   State the given and needed quantities.

ANALYZE THE PROBLEM Given Need Connect
125 g of ice at 0 °C total kilojoules to melt ice at 0 °C and to raise temperature of  water to 37.0 °C combine heat from change of state (heat of fusion) and temperature change (specific heat of water)

STEP 2  Write a plan to convert the given quantity to the needed quantity.

Total heat = kilojoules needed to melt the ice at 0 °C and heat the water                             from 0 °C (freezing point) to 37.0 °C

STEP 3  Write the heat conversion factors and any metric factor.

\begin{array}{r c}\boxed{\begin{matrix} 1  g  of  H_{2}O(s \rightarrow l) = 334  J \\\frac{\text{334 J }}{1  g  of  H_{2}O } \text{ and } \frac{1  g  of  H_{2}O }{\text{334 J }} \end{matrix}} & \boxed{\begin{matrix} 1 \mathrm{~SH_{water}} ~ = \frac{4.184  J}{g °C} \\\frac{4.184  J}{g °C} \text{ and } \frac{g °C}{4.184  J} \end{matrix}} & \boxed{\begin{matrix} \text{1 kJ = l000 J }\\ \frac{\text{l000 J }}{\text{1 kJ }}\text{ and }\frac{\text{1 kJ}}{\text{l000 J }} \end{matrix}}\end{array}

STEP 4  Set up the problem and calculate the needed quantity.

\boxed{\Delta T} = 37.0°C- 0 °C= \boxed{37.0°C}

Heat needed to change ice (solid) to water (liquid) at 0 °C:

\boxed{Heat} = \underset{Three  SFs }{\boxed{125  \cancel{g  ice}}} \times \overset{Three  SFs}{\underset{Exact}{\boxed{\frac{334  \cancel{J}}{1  \cancel{g  ice}}} }} \times \overset{Exact}{\underset{Exact}{\boxed{\frac{1  KJ}{1000  \cancel{J}} }}}= \underset{Three  SFs}{41.8  kJ}

Heat needed to warm water (liquid) from 0 °C to water (liquid) at 37.0 °C:

\boxed{Heat} = \underset{Three  SFs }{\boxed{125  \cancel{g }}} \times \underset{Three  SFs }{\boxed{37.0  °\cancel{C }}} \times \overset{Exact}{\underset{Exact}{\boxed{\frac{4.184  \cancel{J}}{1  \cancel{g}  °\cancel{C}}} }} \times \overset{Exact}{\underset{Exact}{\boxed{\frac{1  KJ}{1000  \cancel{J}} }}}= \underset{Three  SFs}{19.4  kJ}

Calculate the total heat:

Melting ice at 0 °C                                      41.8 kJ

Heating water (0 °C to 37.0 °C)              \underline{19.4  KJ}

Total heat needed                                      61.2 kJ

Related Answered Questions

Question: 3.8

Verified Answer:

STEP 1   State the given and needed quantities. ...
Question: 3.5

Verified Answer:

STEP 1   State the given and needed quantities. ...