Question 12.6: Integrating a Square Wave Determine the output voltage for t...

Integrating a Square Wave

Determine the output voltage for the integrator circuit of Figure 12.31 if the input is a square wave of amplitude \pm A and period T.

12.31
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known Quantities: Feedback and source impedances; input waveform characteristics.

Find: v_{\text {out }}(t).

Schematics, Diagrams, Circuits, and Given Data: T=10 \mathrm{~ms} ; C_{F}=1  \mu \mathrm{F} ; R_{S}=10  \mathrm{k} \Omega.

Assumptions: Assume ideal op-amp. The square wave starts at t=0 and therefore v_{\text {out }}(0)=0.

Analysis: Following equation 12.67,

v_{\mathrm{out}}(t)=-\frac{1}{R_S C_F} \int_{-\infty}^t v_S\left(t^{\prime}\right) d t^{\prime}       (12.67)

we write the expression for the output of the integrator:

\begin{aligned}v_{\text {out }}(t) &=-\frac{1}{R_{F} C_{S}} \int_{-\infty}^{t} v_{S}\left(t^{\prime}\right) d t^{\prime}=-\frac{1}{R_{F} C_{S}}\left(\int_{-\infty}^{0} v_{S}\left(t^{\prime}\right) d t^{\prime}+\int_{0}^{t} v_{S}\left(t^{\prime}\right) d t^{\prime}\right) \\&=-\frac{1}{R_{F} C_{S}}\left(v_{\text {out }}(0)+\int_{0}^{t} v_{S}\left(t^{\prime}\right) d t^{\prime}\right)\end{aligned}

Next, we note that we can integrate the square wave in a piecewise fashion by observing that v_{S}(t)=A for 0 \leq t<T / 2 and v_{S}(t)=-A for T / 2 \leq t<T. We consider the first half of the waveform:

\begin{aligned}v_{\text {out }}(t) &=-\frac{1}{R_{F} C_{S}}\left(v_{\text {out }}(0)+\int_{0}^{t} v_{S}\left(t^{\prime}\right) d t^{\prime}\right)=-100\left(0+\int_{0}^{t} A d t^{\prime}\right) \\&=-100 A t \quad 0 \leq t<\frac{T}{2} \\v_{\text {out }}(t) &=v_{\text {out }}\left(\frac{T}{2}\right)-\frac{1}{R_{F} C_{S}} \int_{T / 2}^{t} v_{S}\left(t^{\prime}\right) d t^{\prime}=-100 A \frac{T}{2}-100 \int_{T / 2}^{t}(-A) d t^{\prime} \\&=-100 A \frac{T}{2}+100 A\left(t-\frac{T}{2}\right)=-100 A(T-t) \quad \frac{T}{2} \leq t<T\end{aligned}

Since the waveform is periodic, the above result will repeat with period T, as shown in Figure 12.32.

Comments: The integral of a square wave is thus a triangular wave. This is a useful fact to remember. Note that the effect of the initial condition is very important, since it determines the starting point of the triangular wave.

12.32

Related Answered Questions

Question: 12.10

Verified Answer:

Known Quantities: Resistor, capacitor, and supply ...