Question 5.24: Prove that, for n = 1, 2, 3, ... , ∫^2π 0 cos^2n θ dθ = 1 . ...
Prove that, for n = 1, 2, 3, … ,
\int_0^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)} 2 \piThe blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
Let z=e^{i \theta}. Then, d z=i e^{i \theta} d \theta=i z d \theta \quad or \quad d \theta=d z / i z \quad and \quad \cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)=\frac{1}{2}(z+1 / z). Hence, if C is the unit circle |z|=1, we have
\begin{aligned}\int_0^{2 \pi} \cos ^{2 n} \theta d \theta &=\oint_C\left\{\frac{1}{2}\left(z+\frac{1}{z}\right)\right\}^{2 n} \frac{d z}{i z} \\&=\frac{1}{2^{2 n}} \oint_C \frac{1}{z}\left\{z^{2 n}+\left(\begin{array}{c} 2 n \\1\end{array}\right)\left(z^{2 n-1}\right)\left(\frac{1}{z}\right)+\cdots+\left(\begin{array}{c}2 n \\k\end{array}\right)\left(z^{2 n-k}\right)\left(\frac{1}{z}\right)^k+\cdots+\left(\frac{1}{z}\right)^{2 n}\right\} d z \\&=\frac{1}{2^{2 n} i} \oint_C\left\{z^{2 n-1}+\left(\begin{array}{c} 2 n \\1\end{array}\right) z^{2 n-3}+\cdots+\left(\begin{array}{c}2 n \\k\end{array}\right) z^{2 n-2 k-1}+\cdots+z^{-2 n}\right\} d z \\&=\frac{1}{2^{2 n} i} \cdot 2 \pi i\left(\begin{array}{c}2 n \\n\end{array}\right)=\frac{1}{2^{2 n}}\left(\begin{array}{c}2 n \\n\end{array}\right) 2 \pi \\&=\frac{1}{2^{2 n}} \frac{(2 n) !}{n ! n !} 2 \pi=\frac{(2 n)(2 n-1)(2 n-2) \cdots(n)(n-1) \cdots 1}{2^{2 n} n ! n !} 2 \pi \\&=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} 2 \pi\end{aligned}Related Answered Questions
Question: 5.29
Verified Answer:
\text { The poles of } \frac{e^z}{\left(z^2...
Question: 5.25
Verified Answer:
In Problem 3.6, we proved that u and v are harmoni...
Question: 5.28
Verified Answer:
(a) If F(z) has a pole of order m at z = a, then [...
Question: 5.27
Verified Answer:
(a) The only place where there is any question as ...
Question: 5.26
Verified Answer:
The function f(z)/z is analytic in |z| ≤ R. Hence,...
Question: 5.23
Verified Answer:
Method 1. Construct cross-cut EH connecting circle...
Question: 5.22
Verified Answer:
Let C be the boundary of a semicircle of radius R ...
Question: 5.21
Verified Answer:
(a) Since z=r e^{i \theta} is any p...
Question: 5.20
Verified Answer:
Consider the circle C_1:|z|=1. Let ...
Question: 5.19
Verified Answer:
Suppose the polynomial to be a_0+a_1 z+a_2 ...