Question 5.24: Prove that, for n = 1, 2, 3, ... , ∫^2π 0 cos^2n θ dθ = 1 . ...

Prove that, for n = 1, 2, 3, … ,

\int_0^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)} 2 \pi
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let z=e^{i \theta}. Then, d z=i e^{i \theta} d \theta=i z d \theta \quad or \quad d \theta=d z / i z \quad and \quad \cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)=\frac{1}{2}(z+1 / z). Hence, if C is the unit circle |z|=1, we have

\begin{aligned}\int_0^{2 \pi} \cos ^{2 n} \theta d \theta &=\oint_C\left\{\frac{1}{2}\left(z+\frac{1}{z}\right)\right\}^{2 n} \frac{d z}{i z} \\&=\frac{1}{2^{2 n}} \oint_C \frac{1}{z}\left\{z^{2 n}+\left(\begin{array}{c} 2 n \\1\end{array}\right)\left(z^{2 n-1}\right)\left(\frac{1}{z}\right)+\cdots+\left(\begin{array}{c}2 n \\k\end{array}\right)\left(z^{2 n-k}\right)\left(\frac{1}{z}\right)^k+\cdots+\left(\frac{1}{z}\right)^{2 n}\right\} d z \\&=\frac{1}{2^{2 n} i} \oint_C\left\{z^{2 n-1}+\left(\begin{array}{c} 2 n \\1\end{array}\right) z^{2 n-3}+\cdots+\left(\begin{array}{c}2 n \\k\end{array}\right) z^{2 n-2 k-1}+\cdots+z^{-2 n}\right\} d z \\&=\frac{1}{2^{2 n} i} \cdot 2 \pi i\left(\begin{array}{c}2 n \\n\end{array}\right)=\frac{1}{2^{2 n}}\left(\begin{array}{c}2 n \\n\end{array}\right) 2 \pi \\&=\frac{1}{2^{2 n}} \frac{(2 n) !}{n ! n !} 2 \pi=\frac{(2 n)(2 n-1)(2 n-2) \cdots(n)(n-1) \cdots 1}{2^{2 n} n ! n !} 2 \pi \\&=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} 2 \pi\end{aligned}

Related Answered Questions

Question: 5.29

Verified Answer:

\text { The poles of } \frac{e^z}{\left(z^2...
Question: 5.25

Verified Answer:

In Problem 3.6, we proved that u and v are harmoni...
Question: 5.26

Verified Answer:

The function f(z)/z is analytic in |z| ≤ R. Hence,...
Question: 5.22

Verified Answer:

Let C be the boundary of a semicircle of radius R ...
Question: 5.20

Verified Answer:

Consider the circle C_1:|z|=1. Let ...