Question 7.15: A cast iron beam is of I-section as shown in Fig. 7.20. The ...

A cast iron beam is of I-section as shown in Fig. 7.20. The beam is simply supported on a span of 5 metres. If the tensile stress is not to exceed 20 N/mm², find the safe uniformly load which the beam can carry. Find also the maximum compressive stress.

7.20
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :
Length of beam,                 L = 5 m
Maximum tensile stress,  σ_t = 20  N/mm^2
First calculate the C.G. of the section. Let \bar{y} is the distance of the C.G. from the bottom face. As the section is symmetrical about y-axis, hence \bar{y} is only to be calculated.

Now \bar{y}=\frac{A_1y_1+A_2y_2+A_3y_3}{(A_1+A_2+A_3)} \\ \space \\ \quad \quad \quad \quad =\frac{(160\times 40) \cdot \frac{40}{2}+(200\times 20)\Big(40+\frac{200}{2}\Big)+(80\times 20)\cdot \Big(40+200+\frac{20}{2}\Big)}{160\times 40+200\times 20 + 80 \times 20} \\ \space \\ \quad \quad \quad \quad =\frac{128000+560000+400000}{6400+4000+1600}=\frac{1088000}{12000}=90.66  mm

N.A. lies at a distance of 90.66 mm from the bottom face or 260 – 90.66 = 169.34 mm from the top face.
Now moment of inertia of the section about N-axis is given by,

I=I_1+I_2+I_3

where I_1 = M.O.I. of bottom flange about N.A.

= \text{ M.O.I. of bottom flange about its C.G. } + A_1 × \text{ (Distance of its C.G. from N.A.)}^2 \\ = \frac{160 \times 40^3}{12} +160 \times 40 \times (90.66-20)^2 \\ = 853333.33 + 31954147.84 = 32807481.17  mm^4 \\ I_2 = \text{ M.O.I. of web about N.A.} \\  = \text{ M.O.I. of web about its C.G. }+ A_2 × \text{ (Distance of its C.G. from N.A.)}^2 \\ = \frac{20 \times 200^3}{12} + 200 \times 20 \times (140-90.66)^2 \\ = 13333333.33 + 9737742.4 = 23071075.73  mm^4 \\ I_3 = \text{ M.O.I. of top flange about N.A.} \\ = \text{M.O.I. of top flange about its C.G. + }A_3 \times \text{ (Distance of its C.G. from N.A.)}^2\\ =\frac{80\times 20^3}{12}+80\times 20 \times (250-90.66)^2 \\ = 53333.33 + 40622776.96 = 40676110.29  mm^4

∴            I = 32807481.17 + 23071075.75 + 40676110.29 = 96554667.21  mm^4.

For a simply supported beam, the tensile stress will be at the extreme bottom fibre and compressive stress will be at the extreme top fibre.
Here maximum tensile stress = 20 N/mm²
Hence for the maximum tensile stress,

y = 90.66 mm

[i.e., y is the distance of the extreme bottom fibre (where the tensile stress is maximum) from the N.A.]
Using the relation, \frac{M}{I}=\frac{\sigma}{y}

∴                                 M=\frac{\sigma}{y}\times I \\ =\frac{20}{90.66} \times 96554667.21  \quad (∵  σ = σ_t = 20  N/mm^2) \\ = 21300389.85  Nmm            …(i)

Let w = Uniformly distributed load in N/m on the simply supported beam.
The maximum B.M. is at the centre and equal to \frac{wL^2}{8}

∴               M=\frac{w\times 5^2}{8}  Nm=\frac{w \times 25 \times 1000}{8}  Nmm=3125w  Nmm        …(ii)

Equating the two values of M, given by equations (i) and (ii), we get

3125w = 21300389.85

∴                w=\frac{21300389.85}{3125}=\pmb{6816.125  N/m.}

Maximum Compressive Stress
Distance of extreme top fibre from N.A.,

y_c = 169.34 mm
M = 21300389.85
I = 96554667.21

Let  σ_c = Max. compressive stress

Using the relation, \frac{M}{I}=\frac{\sigma}{y}

∴              \sigma=\frac{M}{I}\times y

or             \sigma_c=\frac{M}{I}\times y_c =  \frac{21300389.85}{96554667.21} \times 169.34 = \pmb{37.357  N/mm^2.}

Related Answered Questions