Question 7.21: Prove that the ratio of depth to width of the strongest beam...

Prove that the ratio of depth to width of the strongest beam that can be cut from a circular log of diameter d is 1.414. Hence calculate the depth and width of the strongest beam that can be cut of a cylindrical log of wood whose diameter is 300 mm.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :
Dia. of log = d
Let ABCD be the strongest rectangular section which can be cut out of the cylindrical log.
Let b = Width of strongest section.
d = Depth of strongest section.

Now section modulus of the rectangular section

Z=\frac{I}{y}=\frac{(\frac{bh^3}{12})}{(\frac{h}{2})}=\frac{bh^2}{6}      …(i)

In the above equation, b and h are variable.
From ∆BCD, b² + h² = d²
or                     h² = d² – b²

Substituting the value of h² in equation (i), we get

Z=\frac{b}{6}[d^2-b^2]=\frac{1}{6}[bd^2-b^3]                 …(ii)

In the above equation, d is constant and hence only variable is b.
Now for the beam to be strongest, the section modulus should be maximum (or Z should be maximum).
For maximum value of Z,

\frac{dZ}{db}=0

or     \frac{d}{db}=[\frac{bd^2-b^3}{6}]=0 \quad \text{ or } \quad \frac{d^2-3b^2}{6}=0

or      d² – 3b² = 0     or     d² = 3b²      …(iii)

But from triangle BCD,

d² = b² + h²

Substituting the value of d² in equation (iii), we get

b² + h² = 3b²     or    h² = 2b²

or       h=\sqrt{2}\times b              …(iv)

or       \frac{h}{b}=\sqrt{2}=\pmb{1.414.}

Numerical Part

Given, d = 300 mm
But for equation (iii), d² = 3b²    or    3b² = d² = 300² = 90000

or              b^2=\frac{90000}{3}=30000

∴                b=(30000)^{1/2}=\pmb{173.2  mm.}

From equation (iv),

h=\sqrt{2}\times b=1.414 × 173.2 = \pmb{249.95  mm.}

7.27

Related Answered Questions