Question 2.136: Determine the components of F that act along rod AC and perp...

Determine the components of F that act along rod AC and perpendicular to it. Point B is located at the midpoint of the rod.

photo_2022-11-26_10-38-13
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
r _{A C}=(-3 i +4 j -4 k ), \quad r_{A C}=\sqrt{(-3)^2+4^2+(-4)^2}=\sqrt{41}  m

 

r _{A B}=\frac{ r _{A C}}{2}=\frac{-3  i +4  j +4  k }{2}=-1.5 i +2 j -2  k

 

\begin{aligned}r _{A D} &= r _{A B}+ r _{B D} \\r _{B D} &= r _{A D}- r _{A B} \\&=(4  i +6  j -4  k )-(-1.5  i +2  j -2  k ) \\&=\{5.5  i +4  j -2  k \}   m\end{aligned}

 

r_{B D}=\sqrt{(5.5)^2+(4)^2+(-2)^2}=7.0887  m

 

F =600\left(\frac{ r _{B D}}{r_{B D}}\right)=465.528  i +338.5659  j -169.2829  k

 

\text { Component of } F \text { along } r _{A C} \text { is } F _{\|}

 

F_{\|}=\frac{ F \cdot r _{A C}}{r_{A C}}=\frac{(465.528  i +338.5659  j -169.2829  k ) \cdot(-3 i +4 j -4 k )}{\sqrt{41}}

 

F_{||}=99.1408=99.1   N

 

\text { Component of } F \text { perpendicular to } r _{A C} \text { is } F_{\perp}

 

\begin{aligned}&F_{\perp}^2+F_{\mid \mid}^2=F^2=600^2 \\&F_{\perp}^2=600^2-99.1408^2 \\&F_{\perp}=591.75=592   N\end{aligned}

Related Answered Questions

Question: 2.123

Verified Answer:

Position Vectors: The position vectors r _{...
Question: 2.122

Verified Answer:

Position Vectors: The position vectors and must be...
Question: 2.121

Verified Answer:

Unit Vectors: The unit vectors and must be determi...
Question: 2.8

Verified Answer:

Parallelogram Law: The parallelogram law of additi...