Question 16.15: Solve the Poisson equation uxx+ uyy = x² + y² for a thin re...
Solve the Poisson equation u_{x x}+u_{y y}=x^2+y^2 for a thin rectangular plate, whose edges x = 0, x = 2 are kept at 0°C (in ice) and edges y = 0, y = 2 are kept at temperature 100°C (in boiling water). Find the values of u(x, y) at the nodal points of the rectangular region with mess length 0.5. Use Gauss–Seidel iterative method to compute values at nodal points until the difference between successive values at each point is less than 0.005. Use symmetry.
Learn more on how we answer questions.
The edges of the square region are x = 0, x = 2, y = 0, y = 2 with the mess length 0.5. So, the values of x and y are as follows
\begin{array}{ll} x & y \\ x_0=0 & y_0=0 \\ x_1=0.5 & y_1=0.5 \\ x_2=1 & y_2=1 \\ x_3=1.5 & y_3=1.5 \end{array}
x_4=2 \quad y_4=2 (16.81)
Let the value of u\left(x_i, y_j\right)=u_{i j} , we have
\begin{aligned} &u_{01}=0, \quad u_{02}=0, u_{03}=0 \quad(x=0) \\ &u_{41}=0, \quad u_{42}=0, u_{43}=0 \quad(x=2) \\ &u_{10}=100, \quad u_{20}=100, u_{30}=100 \quad(y=0) \\ & \end{aligned}
u_{14}=100, \quad u_{24}=100, u_{34}=100 \quad(y=2) (16.82)
Let us solve the Poisson equation u_{x x}+u_{y y}=x^2+y^2 with symmetry consideration. Since the boundary conditions and the Poisson equation are symmetrical around the lines x =1 and y =1; so we can assume the values about these lines are equal; i.e.
u_{11}=u_{31}, u_{12}=u_{32}, u_{13}=u_{33} (Symmetry about x = 1)
u_{11}=u_{13}, u_{21}=u_{23}, u_{31}=u_{33} (Symmetry about y = 1) (16.83)
So, we need to find values of u_{11}, u_{21}, u_{12}, u_{22} only.
The Poisson equation \nabla^2 u=u_{x x}+u_{y y}=x^2+y^2 \text { at point }\left(x_i, y_j\right) is given by
\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^2}+\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{h^2}=x_i^2+y_j^2
(or) u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}=h^2\left(x_i^2+y_j^2\right)
We need to find values of u_{11}, u_{21}, u_{12}, u_{22}, so
\begin{array}{ll} \text { At }(1,1) & u_{21}+u_{01}+u_{12}+u_{10}-4 u_{11}=(0.5)^2\left(x_1^2+y_1^2\right) \\ \text { At }(2,1) & u_{31}+u_{11}+u_{22}+u_{20}-4 u_{21}=(0.5)^2\left(x_2^2+y_1^2\right) \\ \text { At }(1,2) & u_{22}+u_{02}+u_{13}+u_{11}-4 u_{12}=(0.5)^2\left(x_1^2+y_2^2\right) \end{array}
\text { At }(2,2) \quad u_{32}+u_{12}+u_{23}+u_{21}-4 u_{22}=(0.5)^2\left(x_2^2+y_2^2\right) (16.84)
Using symmetries from Eq. (16.81), the values of x_i, y_j, u_{i j} from Eqs. (16.82) and (16.83), the set of Eqs. (16.84) becomes
\begin{aligned} &u_{21}+u_{12}-4 u_{11}=-100+(0.5)^2(0.5)=-99.875 \\ &2 u_{11}+u_{22}-4 u_{21}=-100+(0.5)^2(1.25)=-99.6875 \\ &u_{22}+2 u_{11}-4 u_{12}=(0.5)^2(1.25)=0.3125 \\ &2 u_{12}+2 u_{21}-4 u_{22}=(0.5)^2(2)=0.5 \end{aligned}
On solving this system of linear equations with the help of Gauss–Seidel method for u_{11}, u_{21}, u_{12}, u_{22} , we have
Iteration 1 | |||
24.781250 | 12.406250 | 37.406250 | 24.968750 |
Iteration 2 | |||
37.203125 | 24.828125 | 49.828125 | 37.421875 |
Iteration 3 | |||
43.414062 | 31.039062 | 56.039062 | 43.632812 |
Iteration 4 | |||
46.519531 | 34.144531 | 59.144531 | 46.738281 |
Iteration 5 | |||
48.072266 | 35.697266 | 60.697266 | 48.291016 |
Iteration 6 | |||
48.848633 | 36.473633 | 61.473633 | 49.067383 |
Iteration 7 | |||
49.236816 | 36.861816 | 61.861816 | 49.455566 |
Iteration 8 | |||
49.430908 | 37.055908 | 62.055908 | 49.649658 |
Iteration 9 | |||
49.527954 | 37.152954 | 62.152954 | 49.746704 |
Iteration 10 | |||
49.576477 | 37.201477 | 62.201477 | 49.795227 |
Iteration 11 | |||
49.600739 | 37.225739 | 62.225739 | 49.819489 |
Iteration 12 | |||
49.612869 | 37.237869 | 62.237869 | 49.831619 |
Iteration 13 | |||
49.618935 | 37.243935 | 62.243935 | 49.837685 |
Iteration 14 | |||
49.621967 | 37.246967 | 62.246967 | 49.840717 |
Iteration 15 | |||
49.623482 | 37.248482 | 62.248482 | 49.842232 |
Iteration 16 | |||
49.624241 | 37.249241 | 62.249241 | 49.842991 |
The Final solution is given by
\begin{aligned} &u_{11}=u_{13}=u_{31}=u_{33}=49.842991 \\ &u_{21}=u_{23}=62.249241 \\ &u_{12}=u_{32}=37.249241 \\ &u_{22}=49.624241 \end{aligned}
