Question 16.15: Solve the Poisson equation uxx+ uyy  = x² + y² for a thin re...

Solve the Poisson equation u_{x x}+u_{y y}=x^2+y^2  for a thin rectangular plate, whose edges x = 0, x = 2 are kept at 0°C (in ice) and edges y = 0, y = 2 are kept at temperature 100°C (in boiling water). Find the values of u(x, y) at the nodal points of the rectangular region with mess length 0.5. Use Gauss–Seidel iterative method to compute values at nodal points until the difference between successive values at each point is less than 0.005. Use symmetry.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The edges of the square region are x = 0, x = 2, y = 0, y = 2 with the mess length 0.5. So, the values of x and y are as follows

\begin{array}{ll} x & y \\ x_0=0 & y_0=0 \\ x_1=0.5 & y_1=0.5 \\ x_2=1 & y_2=1 \\ x_3=1.5 & y_3=1.5 \end{array}

x_4=2 \quad y_4=2             (16.81)

Let the value of u\left(x_i, y_j\right)=u_{i j} , we have

\begin{aligned} &u_{01}=0, \quad u_{02}=0, u_{03}=0 \quad(x=0) \\ &u_{41}=0, \quad u_{42}=0, u_{43}=0 \quad(x=2) \\ &u_{10}=100, \quad u_{20}=100, u_{30}=100 \quad(y=0) \\ & \end{aligned}

u_{14}=100, \quad u_{24}=100, u_{34}=100 \quad(y=2)               (16.82)

Let us solve the Poisson equation u_{x x}+u_{y y}=x^2+y^2 with symmetry consideration. Since the boundary conditions and the Poisson equation are symmetrical around the lines x =1 and y =1; so we can assume the values about these lines are equal; i.e.

u_{11}=u_{31}, u_{12}=u_{32}, u_{13}=u_{33}       (Symmetry about x = 1)

u_{11}=u_{13}, u_{21}=u_{23}, u_{31}=u_{33}           (Symmetry about y = 1)            (16.83)

So, we need to find values of u_{11}, u_{21}, u_{12}, u_{22} only.

The Poisson equation \nabla^2 u=u_{x x}+u_{y y}=x^2+y^2 \text { at point }\left(x_i, y_j\right) is given by

\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^2}+\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{h^2}=x_i^2+y_j^2

(or)      u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}=h^2\left(x_i^2+y_j^2\right)

We need to find values of u_{11}, u_{21}, u_{12}, u_{22}, so

\begin{array}{ll} \text { At }(1,1) & u_{21}+u_{01}+u_{12}+u_{10}-4 u_{11}=(0.5)^2\left(x_1^2+y_1^2\right) \\ \text { At }(2,1) & u_{31}+u_{11}+u_{22}+u_{20}-4 u_{21}=(0.5)^2\left(x_2^2+y_1^2\right) \\ \text { At }(1,2) & u_{22}+u_{02}+u_{13}+u_{11}-4 u_{12}=(0.5)^2\left(x_1^2+y_2^2\right) \end{array}

\text { At }(2,2) \quad u_{32}+u_{12}+u_{23}+u_{21}-4 u_{22}=(0.5)^2\left(x_2^2+y_2^2\right)            (16.84)

Using symmetries from Eq. (16.81), the values of x_i, y_j, u_{i j} from Eqs. (16.82) and (16.83), the set of Eqs. (16.84) becomes

\begin{aligned} &u_{21}+u_{12}-4 u_{11}=-100+(0.5)^2(0.5)=-99.875 \\ &2 u_{11}+u_{22}-4 u_{21}=-100+(0.5)^2(1.25)=-99.6875 \\ &u_{22}+2 u_{11}-4 u_{12}=(0.5)^2(1.25)=0.3125 \\ &2 u_{12}+2 u_{21}-4 u_{22}=(0.5)^2(2)=0.5 \end{aligned}

On solving this system of linear equations with the help of Gauss–Seidel method for u_{11}, u_{21}, u_{12}, u_{22} , we have

Iteration 1
24.781250 12.406250 37.406250 24.968750
Iteration 2
37.203125 24.828125 49.828125 37.421875
Iteration 3
43.414062 31.039062 56.039062 43.632812
Iteration 4
46.519531 34.144531 59.144531 46.738281
Iteration 5
48.072266 35.697266 60.697266 48.291016
Iteration 6
48.848633 36.473633 61.473633 49.067383
Iteration 7
49.236816 36.861816 61.861816 49.455566
Iteration 8
49.430908 37.055908 62.055908 49.649658
Iteration 9
49.527954 37.152954 62.152954 49.746704
Iteration 10
49.576477 37.201477 62.201477 49.795227
Iteration 11
49.600739 37.225739 62.225739 49.819489
Iteration 12
49.612869 37.237869 62.237869 49.831619
Iteration 13
49.618935 37.243935 62.243935 49.837685
Iteration 14
49.621967 37.246967 62.246967 49.840717
Iteration 15
49.623482 37.248482 62.248482 49.842232
Iteration 16
49.624241 37.249241 62.249241 49.842991

The Final solution is given by

\begin{aligned} &u_{11}=u_{13}=u_{31}=u_{33}=49.842991 \\ &u_{21}=u_{23}=62.249241 \\ &u_{12}=u_{32}=37.249241 \\ &u_{22}=49.624241 \end{aligned}

28

Related Answered Questions