Question 3.9: Investigate the stress conditions at any position in a thin-...
Investigate the stress conditions at any position in a thin-walled pressure vessel which is a volume of revolution of the curve y = x². The vessel is supported from the top and is subjected to an internal gas pressure p. Assume wall thickness to be t. Also, assume that one end of the vessel is closed. Refer to Figure 3.16(a).

Learn more on how we answer questions.
Let us take a small element ABCD as shown surrounding a point from Figure 3.16(b) and draw a tangent and normal to that point on the curve. Obviously
r_1=\frac{x}{\sin \psi}[\text { refer Eq }(3.7)]
r_1=\frac{x}{\sin \alpha} (3.7)
where tan ψ = dy/dx = 2x because y = x². Therefore,
r_1=\frac{x}{2 x / \sqrt{1+4 x^2}}=\frac{\sqrt{1+4 x^2}}{2}
and r_2=\frac{\left[1+( d y / d x)^2\right]^{3 / 2}}{\left| d ^2 y / d x^2\right|}=\frac{\left[1+(2 x)^2\right]^{3 / 2}}{2}=\frac{\left(1+4 x^2\right)^{3 / 2}}{2}
Using the general equation
\frac{\sigma_1}{r_1}+\frac{\sigma_2}{r_2}=\frac{p}{t}
and substituting r_1 \text { and } r_2 , we get
\frac{2 \sigma_1}{\sqrt{1+4 x^2}}+\frac{2 \sigma_2}{\left(1+4 x^2\right)^{3 / 2}}=\frac{p}{t}
or \frac{\sigma_1}{\sqrt{1+4 x^2}}+\frac{\sigma_2}{\left(1+4 x^2\right)^{3 / 2}}=\frac{p}{2 t} (1)
To find \sigma_2 , we can make a horizontal cut along X’ – X’ and consider the vertical equilibrium of the lower portion. It gives us the following equation:
\sigma_2(2 \pi x t) \sin \psi=p \pi x^2
This is because \sigma_2 stress lines are parallel to the tangents to the vessel at the location where X’-X’ cuts the vessel geometry. Therefore,
\begin{aligned} \sigma_2 & =\frac{p \pi x^2}{2 \pi x t \sin \psi} \\ & =\frac{p x}{2 t} \times \frac{1}{\sin \psi} \\ & =\frac{p x}{2 t} \times \frac{\sqrt{1+4 x^2}}{2 x} \\ & =\frac{p}{4 t} \sqrt{1+4 x^2} \end{aligned}
As y = x², we have
\sigma_2=\frac{p}{4 t} \sqrt{1+4 y}
This is the desired longitudinal stress. Putting this value in Eq. (1), we obtain the value of \sigma_1
\frac{\sigma_1}{\sqrt{1+4 x^2}}=\frac{p}{2 t}-\frac{p}{4 t} \times \frac{\sqrt{1+4 x^2}}{\left(1+4 x^2\right)^{3 / 2}}
or \frac{\sigma_1}{\sqrt{1+4 x^2}}=\frac{p}{2 t}\left[1-\frac{1}{2\left(1+4 x^2\right)}\right]
or \sigma_1=\frac{p}{2 t}\left[\sqrt{1+4 x^2}-\frac{1}{2 \sqrt{1+4 x^2}}\right]
=\frac{p}{2 t}\left[\sqrt{1+4 y}-\frac{1}{2 \sqrt{1+4 y}}\right]
This is the required circumferential stress.