Question 4.5: Two mutually perpendicular planes of an element are subjecte...

Two mutually perpendicular planes of an element are subjected to normal stresses of 10.5 MPa (tensile) and 3.5 MPa (compressive) and shear stress of 7 MPa (Figure 4.15). Find out the magnitudes and direction of principal stresses.

4.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here σx=10.5 MPa,σy=3.5 MPa and τxy=7.0 MPa \sigma_x=10.5  MPa , \sigma_y=-3.5  MPa \text { and } \tau_{x y}=7.0  MPa . The principal stresses are given by

σ1,2=σx+σy2±σxσy22+τxy2 \sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2} \pm \sqrt{\left\lgroup \frac{\sigma_x-\sigma_y}{2} \right\rgroup^2+\tau_{x y}^2}

Substituting the given values, we get

σ1,2=10.53.52±10.5+3.522+7.02=3.5±72+72=3.5±9.9 MPa \begin{aligned} \sigma_{1,2} & =\frac{10.5-3.5}{2} \pm \sqrt{\left\lgroup \frac{10.5+3.5}{2}\right\rgroup^2+7.0^2} \\ & =3.5 \pm \sqrt{7^2+7^2}=3.5 \pm 9.9  MPa \end{aligned}

Therefore, σ1=13.4 MPa and σ2=6.4 MPa \sigma_1=13.4  MPa \text { and } \sigma_2=-6.4  MPa . Hence, the maximum principal stress is 13.4 MPa and minimum is 6.4 MPa (compressive).
The directions of the principal planes are given by

tan2θ=2τxyσxσy \tan 2 \theta=\frac{2 \tau_{x y}}{\sigma_x-\sigma_y}

or        2θ=45 or 225 2 \theta=45^{\circ} \text { or } 225^{\circ}

Therefore, θ1=2230 and θ2=11230 \theta_1=22^{\circ} 30^{\prime} \text { and } \theta_2=112^{\circ} 30^{\prime}

Related Answered Questions