Question 6.9: A timber beam 15 cm wide and 20 cm deep carries a uniformly ...

A timber beam 15 cm wide and 20 cm deep carries a uniformly distributed load over a span of 4 m and is simply supported. If the permissible stresses are 30 N/m² longitudinally and 3 N/mm² in transverse shear, calculate the maximum load which can be carried by the timber beam.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For the uniformly distributed loading of intensity wo w_{ o } on a simply supported beam of length L, we have maximum shear force as

Vmax=woL2 V_{\max }=\frac{w_{ o } L}{2}

and maximum bending moment as

Mmax=woL28 M_{\max }=\frac{w_{ o } L^2}{8}

Now,

σmax=Mmaxz=6Mmaxbh2Mmax=woL28=bh26σmaxwo=43bh2L2σmax \begin{aligned} \sigma_{\max } & =\frac{M_{\max }}{z}=\frac{6 M_{\max }}{b h^2} \\ \Rightarrow \quad M_{\max } & =\frac{w_{ o } L^2}{8}=\frac{b h^2}{6} \sigma_{\max } \\ \Rightarrow \quad w_{ o } & =\frac{4}{3}\left\lgroup\frac{b h^2}{L^2} \right\rgroup \sigma_{\max } \end{aligned}

Therefore,

wo=43150×2002400230=15 N/mm w_{ o }=\frac{4}{3}\left\lgroup \frac{150 \times 200^2}{400^2} \right\rgroup 30=15  N / mm

Again for rectangular section the maximum shear stress is:

τmax=32VmaxA=32Vmaxbh \begin{aligned} \tau_{\max } & =\frac{3}{2} \frac{V_{\max }}{A} \\ & =\frac{3}{2} \frac{V_{\max }}{b h} \end{aligned}

and        =woL2=23τmaxbh =\frac{w_{ o } L}{2}=\frac{2}{3} \tau_{\max } b h

Therefore,

wo=43bhLτmax=43150×2004000×3=30 N/mm w_{ o }=\frac{4}{3} \frac{b h}{L} \tau_{\max }=\frac{4}{3} \frac{150 \times 200}{4000} \times 3=30  N / mm

Clearly, the maximum permissible loading intensity is wo=15 w_{ o }=15 N/mm.

Related Answered Questions