Question 7.8: ABM4 PREDICTOR–CORRECTOR METHOD Consider the initial-value p...

ABM4 PREDICTOR–CORRECTOR METHOD

Consider the initial-value problem in Examples 7.4 through 7.7

y′ − x²y = 2x² ,  y(0) = 1, 0 ≤ x ≤ 1, h = 0.1

Compute the estimated value of y_4 = y(0.4) using the ABM4 predictor–corrector method.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

f(x, y) = x²(2 + y). The first element y_0 is given by the initial condition. The next three are obtained by RK4 as

y_1 = 1.001000,   y_2 = 1.008011,   y_3 = 1.027122

The respective f(x, y) values are calculated next

f_0=f(x_0,y_0)=f(0,1)=0,   f_1=f(x_1,y_1)=f(0.1,1.001000)=0.030010

f_2=f(x_2,y_2)=f(0.2,1.008011)=0.120320,  f_3=f(x_3,y_3)=f(0.3,1.027122)=0.272441

Prediction

Equation 7.42 yields

y^{(1)}_{i+1}=y_i+\frac{1}{24}h(55f_i-59f_{i-1}+37f_{i-2}-9f_{i-3}),  i=3,4,  \cdot \cdot \cdot   ,n     (7.42)

y^{(1)}_{4}=y_3+\frac{1}{24}h(55f_3-59f_{2}+37f_{1}-9f_{0})=1.064604

f^{(1)}_{4}=f(x_4,y^{(1)}_{4} ) =f(0.4,1.064604)=0.490337

Correction

Equation 7.43 yields

y^{(k+1)}_{i+1}=y_i+\frac{1}{24}h(9f^{(k)}_{i+1}+19f_{i}-5f_{i-1}+9f_{i-2}),k=1,2,3,\cdot \cdot \cdot       (7.43)

y^{(2)}_{4}=y_3+\frac{1}{24}h(9f^{(1)}_{4}+19f_{3}-5f_{2}+9f_{1})=1.064696,     Rel error=0.0008%

This corrected value may be improved by substituting y^{(2)}_{4} and the corresponding f^{(2)}_{4}=f(x_4,y^{(2)}_{4} ) into Equation 7.43,

y^{(3)}_{4}=y_3+\frac{1}{24}h(9f^{(2)}_{4}+19f_{3}-5f_{2}+9f_{1})

and inspecting the accuracy. In the present analysis, we perform only one correction so that  y^{(2)}_{4}is regarded as the value that will be used for y_4. This estimate is then used in Equation 7.42 with the index i incremented from 3 to 4. Continuing this process, we generate the numerical results in Table 7.4.

TABLE 7.4
Summary of Calculations in Example 7.8
x y_{\text{RK4}}

\overset{\backsim }{y_{i} }

Predicted

y_1

Corrected

0.0 1.000000
0.1 1.001000
0.2 1.008011
0.3 1.027122 Start ABM4
0.4 1.064604 1.064696
0.5 1.127517 1.127662
0.6 1.223795 1.224004
0.7 1.363143 1.363439
0.8 1.557958 1.558381
0.9 1.824733 1.825350
1.0 2.186134 2.187052

Another well-known predictor–corrector method is the fourth-order Milne’s method:

Predictor  y^{(1)}_{i+1}=y_{i-3}+\frac{4}{3}h(2f_i-f_{i-1}+2f_{i-2}),   i=3,4,  \cdot \cdot \cdot   ,n

Corrector  y^{(k+1)}_{i+1}=y_{i-1}+\frac{1}{3}h(f^{k} _{i+1}+4f_{i}+f_{i-1}),   k=1,2,3,  \cdot \cdot \cdot

where f^{(k)}_{i+1} =f(x_{i+1},y^{(k)}_{i+1} ) . As with the fourth-order Adams–Bashforth–Moulton, this method cannot self start and needs a method such as RK4 for estimating y_1,y_2,   and   y_3 first.

Related Answered Questions