Question 6.22: Prove Taylor’s theorem: If f(z) is analytic inside a circle ...

Prove Taylor’s theorem: If f(z) is analytic inside a circle C with center at a, then for all z inside C,

f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2 !}(z-a)^2+\frac{f^{\prime \prime \prime}(a)}{3 !}(z-a)^3+\cdots
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let z be any point inside C. Construct a circle C_1 with center at a and enclosing z (see Fig. 6-4). Then, by Cauchy’s integral formula,

f(z)=\frac{1}{2 \pi i} \oint_{C_1} \frac{f(w)}{w-z} d w     (1)

We have

\begin{aligned}\frac{1}{w-z}= & \frac{1}{(w-a)-(z-a)}=\frac{1}{w-a}\left\{\frac{1}{1-(z-a) /(w-a)}\right\} \\= & \frac{1}{w-a}\left\{1+\left(\frac{z-a}{w-a}\right)+\left(\frac{z-a}{w-a}\right)^2+\cdots+\left(\frac{z-a}{w-a}\right)^{n-1}\right. \\& \left.+\left(\frac{z-a}{w-a}\right)^n \frac{1}{1-(z-a) /(w-a)}\right\}\end{aligned}

or

\frac{1}{w-z}=\frac{1}{w-a}+\frac{z-a}{(w-a)^2}+\frac{(z-a)^2}{(w-a)^3}+\cdots+\frac{(z-a)^{n-1}}{(w-a)^n}+\left(\frac{z-a}{w-a}\right)^n \frac{1}{w-z}            (2)

Multiplying both sides of (2) by f(w) and using (1), we have

f(z)=\frac{1}{2 \pi i} \oint_{C_1} \frac{f(w)}{w-a} d w+\frac{z-a}{2 \pi i} \oint_{C_1} \frac{f(w)}{(w-a)^2} d w+\cdots+\frac{(z-a)^{n-1}}{2 \pi i} \oint_{C_1} \frac{f(w)}{(w-a)^n} d w+U_n         (3)

where

U_n=\frac{1}{2 \pi i} \oint_{C_1}\left(\frac{z-a}{w-a}\right)^n \frac{f(w)}{w-z} d w

Using Cauchy’s integral formulas

f^{(n)}(a)=\frac{n !}{2 \pi i} \oint_{C_1} \frac{f(w)}{(w-a)^{n+1}} d w \quad n=0,1,2,3, \ldots

(3) becomes

f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2 !}(z-a)^2+\cdots+\frac{f^{(n-1)}(a)}{(n-1) !}(z-a)^{n-1}+U_n

If we can now show that \lim _{n \rightarrow \infty} U_n=0, we will have proved the required result. To do this, we note that since w is on C_1,

\left|\frac{z-a}{w-a}\right|=\gamma<1

where \gamma is a constant. Also, we have |f(w)|<M where $M$ is a constant, and

|w-z|=|(w-a)-(z-a)| \geq r_1-|z-a|

where r_1 is the radius of C_1. Hence, from Property (e), Page 112, we have

\begin{aligned}\left|U_n\right| & =\frac{1}{2 \pi}\left|\oint_{C_1}\left(\frac{z-a}{w-a}\right)^n \frac{j(w)}{w-z} d w\right| \\& \leq \frac{1}{2 \pi} \frac{\gamma^n M}{r_1-|z-a|} \cdot 2 \pi r_1=\frac{\gamma^n M r_1}{r_1-|z-a|}\end{aligned}

and we see that \lim _{n \rightarrow \infty} U_n=0, completing the proof.

6.4

Related Answered Questions

Question: 6.28

Verified Answer:

Let us assume that C is taken so th...
Question: 6.27

Verified Answer:

(a) Resolving into partial fractions, \frac...
Question: 6.32

Verified Answer:

Let f(z) be analytic inside and on ...