Question 7.11: For the beam shown in Figure 7.19, compute (a) the slope at ...

For the beam shown in Figure 7.19, compute (a) the slope at A and (b) deflection at C. Assume EI to be constant.

7.19
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We draw the free-body diagram of the beam as shown in Figure 7.20 and compute the support reactions to write the expression of bending moment at any section at a distance x from the left-end support of the beam.

We know

M_x=\frac{P(L-a)}{L} x-P\langle x-a\rangle             (1)

But from our flexure equation, we get by substituting M_{ x } from Eq. (1):

(E I) \frac{ d ^2 y}{ d x^2}=-M_x=-\frac{P(L-a)}{L} x+P\langle x-a\rangle

Integrating twice, we obtain

(E I) \frac{ d y}{ d x}=-\frac{P(L-a)}{2 L} x^2+\frac{P}{2}\langle x-a\rangle^2+C_1

and      (E I) y=-\frac{P(L-a)}{6 L} x^3+\frac{P}{6}\langle x-a\rangle^3+C_1 x+C_2           (3)

Now, at x = 0 and at x = L, y = 0. Therefore, putting x = 0 in the Eq. (3), we get

C_2=0 \quad\left(\text { as } x=0<a,\langle x-a\rangle^3=0\right)

Similarly, putting x = L(> a) and noting \langle x-a\rangle^3=(x-a)^3 \text { for } x>a , in Eq. (3) we get

C_1 L+\frac{P}{6}(L-a)^3-\frac{P(L-a) L^2}{6}=0

or      C_1=\frac{P b\left(L^2-b^2\right)}{6 L}

Assuming L – a = b, we get

(E I) y=-\frac{P b x^3}{6 L}+\frac{P}{6}\langle x-a\rangle^3+\frac{P b\left(L^2-b^2\right)}{6 L} x             (4)

and        \text { (EI) } \frac{ d y}{ d x}=-\frac{P b x^2}{2 L}+\frac{P}{2}\langle x-a\rangle^2+\frac{P b\left(L^2-b^2\right)}{6 L}               (5)

Thus, to obtain slope at A, we put x = 0 in Eq. (5)

\begin{aligned} \left.(E I) \frac{ d y}{ d x}\right|_{x=0} & =\frac{P b\left(L^2-b^2\right)}{6 L} \\ & =\left.\frac{ d y}{ d x}\right|_{x=0}=\left.\frac{ d y}{ d x}\right|_{ A }=\frac{P b\left(L^2-b^2\right)}{6 E I L} \end{aligned}

Therefore, slope at A is

\left.\theta_{ A } \approx \tan \theta_{ A } \approx \frac{ d y}{ d x}\right|_{ A }=\frac{P b\left(L^2-b^2\right)}{6 E I L}

Similarly, to obtain deflection at C, we need to put x = a in Eq. (4) to get

\begin{aligned} (EI)\left.y\right|_{x=a} & =-\frac{P b a^3}{6 L}+\frac{P b a\left(L^2-b^2\right)}{6 L} \\ & =\frac{P b a}{6 L}\left\{\left(L^2-b^2\right)-a^2\right\}=\frac{P b a}{6 L}\left\{L^2-(L-a)^2-a^2\right\} \end{aligned}

Therefore,

\begin{aligned} \left.(E I) y\right|_{x=a} & =\frac{P b a}{6 L}\left\{L^2-L^2+2 L a-2 a^2\right\} \\ & =\frac{P b a^2}{3 L}(L-a)=\frac{P a^2 b^2}{3 L} \end{aligned}

or      \left.y\right|_{x=a}=\frac{P a^2 b^2}{3 E I L}(\downarrow)

7.20

Related Answered Questions

Question: 7.18

Verified Answer:

From the previous problem, we note that the flexur...
Question: 7.17

Verified Answer:

We note from the given beam loading that it is a s...
Question: 7.16

Verified Answer:

Let us draw the free-body diagram of the beam as s...
Question: 7.15

Verified Answer:

Let us first draw the free-body diagram of the bea...
Question: 7.8

Verified Answer:

In the problem, the load P is applied such that sy...