Question 7.12: Determine the angle of rotation θB and deflection δB at the ...

Determine the angle of rotation \theta_B \text { and deflection } \delta_B  at the free end of a cantilever beam AB with uniform load intensity w_o as shown in Figure 7.21. Consider EI to be constant.

7.21
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We draw the free-body diagram of the beam first as shown in Figure 7.22 to determine the support reactions as follows:

Clearly from Figure 7.22(a), considering equilibrium of the entire beam we note that

\sum F_y=0 \Rightarrow R_{ A }=\frac{w_{ o } L}{3}(\uparrow) \text { and } \sum M_{ A }=0 \Rightarrow M_{ A }=\frac{w_{ o } L^2}{3}

Now, we note from Figure 7.22(a) that the distributed load does not continue till the end point of the beam, we draw its equivalent loading diagram as shown in Figure 7.22(b). Therefore the bending-moment at a section at a distance x from the end A of the beam is given by

M_x=R_{ A } x-M_{ A }-\frac{w_{ o }}{2}\left\langle x-\frac{L}{3}\right\rangle^2+\frac{w_{ o }}{2}\left\langle x-\frac{2 L}{3}\right\rangle^2

Putting expression for R_{ A }

M_x=\left\lgroup \frac{w_0 L}{3}\right\rgroup x-\left\lgroup \frac{w_0 L^2}{6}\right\rgroup-\frac{w_0}{2}\left\langle x-\frac{L}{3}\right\rangle^2+\frac{w_0}{2}\left\langle x-\frac{2 L}{3}\right\rangle^2             (1)

From the flexure equation we get by substituting the expression for M_x from Eq. (1):

(E I) \frac{ d ^2 y}{ d x^2}=-M_x=-\left\lgroup \frac{w_{ o } L}{3} \right\rgroup x+\left\lgroup \frac{w_{ o } L^2}{6}\right\rgroup +\frac{w_{ o }}{2}\left\langle x-\frac{L}{3}\right\rangle^2-\frac{w_{ o }}{2}\left\langle x-\frac{2 L}{3}\right\rangle^2

Integrating,

\text { (EI) } \frac{ d y}{ d x}=-\frac{w_{ o } L x^2}{6}+\frac{w_{ o } L^2 x}{6}+\frac{w_{ o }}{6}\left\langle x-\frac{L}{3}\right\rangle^3-\frac{w_{ o }}{6}\left\langle x-\frac{2 L}{3}\right\rangle^3+C_1

But at x = L, dy/dx = 0 and C_1=0 since Macaulay’s functions vanish therefore,

(E I) \frac{ d y}{ d x}=-\frac{w_{ o } L x^2}{6}+\frac{w_{ o } L^2 x}{6}+\frac{w_{ o }}{6}\left\langle x-\frac{L}{3}\right\rangle^3-\frac{w_{ o }}{6}\left\langle x-\frac{2 L}{3}\right\rangle^3              (2)

Again integrating Eq. (2), we get

(E I) y=-\frac{w_0 L x^3}{18}+\frac{w_0 L^2 x^2}{12}+\frac{w_0}{24}\left\langle x-\frac{L}{3}\right\rangle^4-\frac{w_0}{24}\left\langle x-\frac{2 L}{3}\right\rangle^4+C_2

Again at x = 0, y = 0 so from the above expression C_2=0 , since Macaulay’s functions vanish so

(E I) y=-\frac{w_{ o } L x^3}{18}+\frac{w_{ o } L^2 x^2}{12}+\frac{w_{ o }}{24}\left\langle x-\frac{L}{3}\right\rangle^4-\frac{w_{ o }}{24}\left\langle x-\frac{2 L}{3}\right\rangle^4             (3)

Putting x = L in Eqs. (2) and (3) and noting Macaulay’s functions, we get

\left.(E I) \frac{ d y}{ d x}\right|_{x=L}=-\frac{w_{ o } L^3}{6}+\frac{w_{ o } L^3}{6}+\frac{w_0}{6}\left\lgroup \frac{2 L}{3} \right\rgroup^3-\frac{w_{ o }}{6}\left\lgroup \frac{L}{3} \right\rgroup^3=\frac{7 w_{ o } L^3}{112}

Thus, the slope at B is

\left.\frac{ d y}{ d x}\right|_{x=L}=\tan \theta_{ B } \approx \theta_{ B }=\frac{7 w_{ o } L^3}{162 E I}

and

\begin{aligned} \left.(E I) y\right|_{x=L} & =-\frac{w_{ o } L^4}{18}+\frac{w_{ o } L^4}{12}+\frac{w_{ o }}{24}\left\{\left\lgroup \frac{2 L}{3} \right\rgroup^4-\left\lgroup \frac{L}{3} \right\rgroup^4\right\} \\ & =-\frac{w_{ o } L^4}{18}+\frac{w_{ o } L^4}{12}+\frac{5 w_{ o } L^4}{648}=\frac{23 w_{ o } L^4}{648} \end{aligned}

Thus, deflection at B is

\left.y\right|_{x=L}=\delta_{ B }=\frac{23 w_{ o } L^4}{648 E I}(\downarrow)

7.22

Related Answered Questions

Question: 7.18

Verified Answer:

From the previous problem, we note that the flexur...
Question: 7.17

Verified Answer:

We note from the given beam loading that it is a s...
Question: 7.16

Verified Answer:

Let us draw the free-body diagram of the beam as s...
Question: 7.15

Verified Answer:

Let us first draw the free-body diagram of the bea...
Question: 7.11

Verified Answer:

We draw the free-body diagram of the beam as shown...
Question: 7.8

Verified Answer:

In the problem, the load P is applied such that sy...