Question 7.13: For the beam with EI constant shown in Figure 7.23, obtain t...
For the beam with EI constant shown in Figure 7.23, obtain the equation for the elastic line and determine the slope of the elastic line at the right end of the beam.

Learn more on how we answer questions.
Let us draw the free-body diagram of the beam as shown in Figure 7.24(a) to determine the support reactions.
\sum F_y=0 \Rightarrow R_{ A }+R_{ B }=\frac{w_{ o } L}{6}, \sum M_{ A }=0 \Rightarrow R_{ B }=\frac{5 w_{ o } L}{54} \Rightarrow R_{ A }=\frac{4}{54} w_{ o } L(\uparrow)
The equivalent loading diagram is shown in Figure 7.24(b) to write the bending moment at a distance x from end A of the beam. Therefore,
M_x=R_{ A } x-\frac{2 w_{ o }}{6(2 L / 3)}\left\langle x-\frac{L}{3}\right\rangle^3+\frac{w_{ o }}{2}\left\langle x-\frac{2 L}{3}\right\rangle^2+\frac{w_{ o }}{6(L / 3)}\left\langle x-\frac{2 L}{3}\right\rangle^3
Putting the expression for R_{ A } , we get
M_x=\left\lgroup \frac{4 w_0 L}{54} \right\rgroup x-\frac{w_0}{2 L}\left\langle x-\frac{L}{3}\right\rangle^3+\frac{w_0}{2}\left\langle x-\frac{2 L}{3}\right\rangle^2+\frac{w_0}{2 L}\left\langle x-\frac{2 L}{3}\right\rangle^3 (1)
From flexure equation, we get
(E I) \frac{ d ^2 y}{ d x^2}=-M_x
Substituting M_x from Eq. (1):
\text { (EI) } \frac{ d ^2 y}{ d x^2}=\left\lgroup -\frac{4 w_{ o } L}{54} \right\rgroup x+\frac{w_{ o }}{2 L}\left\langle x-\frac{L}{3}\right\rangle^3-\frac{w_{ o }}{2}\left\langle x-\frac{2 L}{3}\right\rangle^2-\frac{w_{ o }}{2 L}\left\langle x-\frac{2 L}{3}\right\rangle^3
Integrating twice, we get
(E I) \frac{ d y}{ d x}=\left\lgroup -\frac{2 w_{ o } L}{54} \right\rgroup x^2+\frac{w_{ o }}{8 L}\left\langle x-\frac{L}{3}\right\rangle^4-\frac{w_{ o }}{6}\left\langle x-\frac{2 L}{3}\right\rangle^3-\frac{w_{ o }}{8 L}\left\langle x-\frac{2 L}{3}\right\rangle^4+C_1 (2)
and (E I) y=\left\lgroup -\frac{2 w_0 L}{162} \right\rgroup x^3+\frac{w_0}{40 L}\left\langle x-\frac{L}{3}\right\rangle^5-\frac{w_{ o }}{24}\left\langle x-\frac{2 L}{3}\right\rangle^4-\frac{w_0}{40 L}\left\langle x-\frac{2 L}{3}\right\rangle^5+C_1 x+C_2 (3)
Now, at x = 0, y = 0, so we get from Eq. (3) C_2=0 and at x = L, y = 0, thus we get
-\frac{w_{ o } L^4}{81}+\frac{w_{ o }}{40 L}\left\lgroup \frac{2 L}{3} \right\rgroup^5-\frac{w_{ o }}{24}\left\lgroup \frac{L}{3} \right\rgroup^4-\frac{w_{ o }}{40 L}\left\lgroup \frac{2 L}{3} \right\rgroup^5+C_1 L=0 [from Eq. (3)]
or C_1=\frac{47 w_{ o } L^3}{4860}
Thus, the equation of the elastic line is given by
y=\left\lgroup \frac{1}{E I} \right\rgroup\left[-\frac{w_{ o } L x^3}{81}+\frac{w_{ o }}{40 L}\left\langle x-\frac{L}{3}\right\rangle^5-\frac{w_{ o }}{24}\left\langle x-\frac{2 L}{3}\right\rangle^4-\frac{w_{ o }}{40 L}\left\langle x-\frac{2 L}{3}\right\rangle^5+\frac{47 w_{ o } L^3 x}{4860}\right]
and the slope is found as
\theta_{ B }=\left.\frac{ d y}{ d x}\right|_{x=L}=\frac{1}{E I}\left[-\frac{w_{ o } L^3}{27}+\frac{w_{ o }}{8 L}\left\lgroup\frac{2 L}{3} \right\rgroup^4-\frac{w_{ o }}{6}\left\lgroup\frac{L}{3} \right\rgroup^3-\frac{w_{ o }}{8 L}\left\lgroup\frac{L}{3} \right\rgroup^4+\frac{47 w_{ o } L^3}{4860}\right]=-\frac{101 w_{ o } L^3}{9720 E I}
We note the negative sign in the expression of slope. Hence the tangent at end B to the elastic line rotates anticlockwise with respect to the x-axis. Therefore,
\theta_{ B }=\frac{101 w_{ o } L^3}{9720 E I} ⦨
