Question 8.5: A truss supports load W as shown in Figure 8.12 (a). Length ...

A truss supports load W as shown in Figure 8.12 (a). Length of AB is L_1 . It is constant, however, strut length BC varies with θ. Assuming that collapse occurs by buckling of strut, find θ for maximum load W.

8.12
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From the free-body diagram of joint B shown in Figure 8.12(b), we can write for equilibrium that

\sum F_y=0=F_{ BC } \sin \theta-W

or        F_{ BC }=\frac{W}{\sin \theta}=W \operatorname{cosec} \theta          (1)

Now considering critical buckling load of BC,

\left(P_{ Cr }\right)_{ BC }=\left[\frac{\pi^2 E(I)}{\left(L_{ e }\right)^2}\right]_{ BC }

\left(P_{ Cr }\right)_{ BC }=\frac{\lambda}{L_1^2} \cos ^2 \theta \quad\left[\text { as } \lambda=\pi^2 E(I)_{ BC }\right]           (2)

Combining Eqs. (1) and (2)

W \operatorname{cosec} \theta=\frac{\lambda}{L_1^2} \cos ^2 \theta

or        W=\frac{\lambda}{L_1^2} \cos ^2 \theta \sin \theta=\frac{\lambda}{L_1^2}\left(\sin \theta-\sin ^3 \theta\right)

Obviously, for W_{\max }, d (W) / d \theta=0 \text { and } d ^2(W) / d \theta^2<0 . \text { Now, } d (W) / d \theta=0 gives

\cos \theta-3 \sin ^2 \theta \cdot \cos \theta=0

or        \cos \theta\left(1-3 \sin ^2 \theta\right)=0

which gives either \cos \theta=0 \text { or } \sin ^2 \theta=1 / 3 . Now,

\frac{ d ^2(W)}{ d \theta^2}=\frac{\lambda}{L_1^2}\left(-\sin \theta-6 \sin \theta \cos ^2 \theta+3 \sin ^3 \theta\right)

and        \left.\frac{ d ^2 W}{ d \theta^2}\right|_{\cos \theta=0 ; \sin \theta=1}=\frac{\lambda}{L_1^2}(-1+3)>0

and        \left.\frac{ d ^2 W}{ d \theta^2}\right|_{\sin ^2 \theta=1 / 3}=\frac{\lambda}{L_1^2}\left[-\frac{1}{\sqrt{3}}-\frac{6}{\sqrt{3}} \times \frac{2}{3}+\frac{1}{\sqrt{3}}\right]<0

Therefore, for w=w_{\max }

\sin ^2 \theta=\frac{1}{3} \quad \text { or } \quad \sin \theta=\frac{1}{\sqrt{3}} \quad \text { or } \quad \theta=35.3^{\circ}

Therefore,

w_{\max }=\frac{\lambda}{L_1^2} \times \frac{2}{3} \times \frac{1}{\sqrt{3}}=\frac{2 \pi^2 E I}{3 \sqrt{3} L_1^2}

Related Answered Questions